
Atlas de Ecografia Oftálmica

Vol I - Ecografia do Segmento Posterior

Filomena Pinto

Filomena Pinto

1ª edição - Fevereiro de 2013

Design e paginação: Paulo Bettencourt

ISBN:

Depósito legal:

Tiragem: 1,000 exemplares

Impresso em: Ondagrafe - Artes Gráficas, Lda. Loures - Portugal

Publicado por: Théa Portugal, SA. Rua Pedro Alvares de Cabral, 24, 5ª F. 2670-391 Loures

© Todos os direitos reservados

Este livro não pode ser reproduzido, armazenado ou transmitido total ou parcialmente, por nenhuma forma e nenhum meio, seja mecânico, electrónico, ou qualquer outro, sem a autorização prévia escrita da autora.

Os textos, bem como os esquemas e imagens do seu conteúdo são da inteira responsabilidade da autora.

Todo o conteúdo deste livro foi publicado sem qualquer interferência da Théa Portugal S.A.

Atlas de Ecografia Oftálmica

Vol I - Ecografia do Segmento Posterior

Filomena Pinto

APRESENTAÇÃO

O estudo ultrassónico do aparelho visual é um método complementar que continua a ter uma enorme importância na prática clínica oftalmológica.

Tendo-se iniciado há cerca de 50 anos, tem tido uma evolução notável não só pela melhoria do equipamento utilizado como também e, muito especialmente, pela contribuição do seu conhecimento e interpretação por aqueles que a esta área mais se têm dedicado.

Neste Serviço, nos anos 80, surgiu um manual sobre ecografia, de grande qualidade, elaborado pelo Sr. Prof. Doutor João Ribeiro da Silva. Passadas 3 décadas, a Sr.ª Dr.ª Filomena Pinto que tem dedicado especial atenção, desde há cerca de 12 anos, ao estudo e à aplicação clínica da ecografia, apresenta o resultado desse trabalho diário, expresso neste livro, em que a apresentação deste tema é feita de modo muito alargado, cobrindo todas as áreas da sua aplicação, tanto a nível do globo ocular como da órbita. Extremamente didático, este livro transmite uma longa experiência de um modo claro e muito elegante.

O Serviço de Oftalmologia do HSM/CHLN fica enriquecido por mais esta excelente contribuição para a oftalmologia portuguesa e penso ser possível afirmar que é o manual da ecografia do séc. XXI para os oftalmologistas mais experientes e de aprendizagem para aqueles que se iniciam na oftalmologia.

Prof. Doutor M. Monteiro-Grillo Diretor do Serviço

Foi com imenso prazer que li o Atlas de Ecografia Oftálmica porque ele nos oferece um texto bem escrito, didático, numa linguagem simples mas com as componentes fundamentais para se entender e aprender ecografia clínica.

A textura do livro mostra atualidade e saber da autora a par de uma perfeita ilustração, com imagens bem esclarecedoras das principais situações clínicas que a ecografia pode e deve complementar no diagnóstico, em Oftalmologia.

É um livro para estar em cima da mesa, ao nosso lado, e um excelente auxiliar na prática do dia-adia porque é de fácil consulta e, simultaneamente, orientador para as perguntas que o clínico deve colocar face ao seu doente e face às situações clínicas com que se defronta.

Por outro lado, fornecendo a ecografia uma dimensão morfológica, num contexto anatómico das estruturas oculares e orbitárias, as imagens apresentadas no livro emprestam ao iniciado em patologia ocular um ensinamento bidimensional das lesões que observa e estuda.

Na verdade, depois dos primeiros ensinamentos que recolhi, pelos anos setenta, junto de Frank Goes, na Bélgica, passei a ser um apologista da ecografia como método de diagnóstico e de monitorização das doenças oculares e orbitárias, de tal forma que não poderei deixar de felicitar esta iniciativa, "up-to-date", da nova geração que revitalizou de forma consistente a informação ecográfica, em Oftalmologia.

Por isso, aconselho vivamente a leitura deste Atlas que nos ensina os fundamentos da ecografia, que nos orienta na compreensão da patologia e no sentido do diagnóstico e, ainda, que demonstra a riqueza informativa que um estudo ecográfico nos pode oferecer.

António Castanheira-Dinis

PREFÁCIO

A aplicação dos ultrassons como método auxiliar de diagnóstico em oftalmologia teve início em meados dos anos 50 e até aos dias de hoje tem-se mantido um exame ainda e sempre atual. Tornou-se fundamental para o diagnóstico e seguimento de várias patologias que afetam essencialmente o segmento posterior do globo ocular e órbita. Recentemente, com o desenvolvimento da ecografia de alta resolução – UBM, tornou-se também possível avaliar em pormenor as alterações à normal ecoestrutura do segmento anterior.

De forma a otimizar todo o potencial informativo que este exame pode fornecer, o médico oftalmologista que se queira dedicar à ecografia deve estar familiarizado com os princípios básicos da ecografia e da física dos ultrassons. Também as várias técnicas de exame adequadas a cada situação clínica devem ser claramente conhecidas e dominadas. A experiência, aliada aos progressos técnicos da atualidade, melhoram a nossa eficácia e naturalmente contribuem para o objetivo final da nossa missão - prevenir, diagnosticar e tratar a doença.

As imagens apresentadas resultam da nossa experiência e correspondem a casos clínicos observados no Serviço de Oftalmologia do CHLN-Hospital de Santa Maria, ao longo de mais de 12 anos. Após uma breve introdução sobre técnicas de exame, serão apresentados ecogramas ilustrativos das principais alterações à normal ecogenicidade do globo ocular e órbita anterior e que permitem ajudar ao diagnóstico e seguimento em oftalmologia.

Filomena Pinto

AGRADECIMENTOS Ao Laboratório Théa, pelo apoio incondicional à publicação deste Atlas e em particular à Sofia Catarino e ao Paulo Bettencourt, pela forma como contribuíram para a concretização deste projeto.

"Aqueles que passam por nós, não vão sós, não nos deixam sós. Deixam um pouco de si, levam um pouco de nós"

Antoine de Saint-Exupéry

INDICE:

Capítulo 1 - INTRODUÇÃO	15
1.1. Propriedades dos ultrassons	16
1.2. Características do eco	
1.2.1. Absorção e refração do ultrassom	
1.2.2. Ângulo de incidência do ultrassom	
1.2.3. Tamanho, forma e consistência da interface	
1.2.3. Tarrianno, forma e consistencia da internace	I C
Capítulo 2 - O EXAME ECOGRÁFICO	19
2.1. Avaliação topográfica	21
2.2. Avaliação quantitativa	23
2.3. Avaliação cinética	23
2.4. O exame ecográfico normal	
2.5. Biometria	
Capítulo 3 - TUMORES INTRAOCULARES e LEUCOCÓRIA	29
3.1. Tumores da úvea	30
3.1.1. Melanoma da coroideia	
3.1.2. Melanoma do corpo ciliar	
3.1.3. Melanocitoma do nervo ótico	
3.1.4. Hemangioma da coroideia	
3.1.5. Metástases da coroideia	
3.1.6. Nevus da coroideia	
3.2. Tumores da retina	
3.2.1. Hamartomas da retina	
3.3. Leucocória	
3.3.1. Retinoblastoma	
3.3.2. Diagnóstico diferencial do retinoblastoma	
Capítulo 4 – VÍTREO	47
4.1. Descolamento posterior do vítreo	48
4.1.1. Descolamento posterior do vítreo parcial	
4.1.2. Descolamento posterior do vítreo total	
4.2. Hialosis asteroid	
4.3. Synchisis scintilants (Colesterelosis bulbi)	
4.4. Amiloidose	
4.5. Hemorragia do vítreo	
Capítulo 5 – RETINA	57
5.1. Descolamento de retina regmatógeno	58
5.2. Descolamento de retina exsudativo	
5.3. Descolamento de retina tracional	
5.4. Avaliação da retina após cirurgia vítreorretiniana	
5.5. Retinosquisis	

Capítulo 6 – COROIDEIA	67
6.1. Descolamento da coroideia	68
6.2. Espessamento da coroideia	
Capítulo 7 - MÁCULA	71
7.1. Edema macular e descolamento seroso da mácula	73
7.2. Degenerescência macular da idade	
7.3. Interface vítreo-mácula	
7.4. Hemorragia pré-macular	The state of the s
Capítulo 8 – INFLAMAÇÃO OCULAR	81
8.1. Esclerite posterior	82
8.2. Endoftalmite	84
8.3. Vitrite	86
8.4. Panuveíte	88
Capítulo 9 – TRAUMATOLOGIA OCULAR	89
9.1.Traumatismo contuso	90
9.2. Traumatismo penetrante	
9.3. Corpo estranho intraocular	94
Capítulo 10 – ÓRBITA E NERVO ÓTICO	97
10.1. Tumores e outras lesões da órbita	98
10.1.1. Tumores neurogénicos	98
10.1.2. Tumores vasculares	100
10.1.3. Tumores linfoproliferativos	
10.1.4. Tumores da glândula lacrimal	
10.1.5. Lesões estruturais	
10.1.6. Malformações vasculares	
10.2. Músculos oculomotores	
10.3. Nervo ótico	
10.3.1. Alterações da morfologia do nervo ótico	
10.3.2. Edema do disco ótico	
10.4. Limites da ecografia	
BIBLIOGRAFIA	121

1. INTRODUÇÃO

1 - INTRODUÇÃO

A ecografia oftálmica é um exame imagiológico estrutural que nos fornece informação sobre as propriedades mecânicas dos tecidos, resultado da interação entre o som e as interfaces que encontra durante a sua propagação. É portanto, uma técnica indispensável na avaliação oftalmológica e que se torna ainda mais importante nas situações em que a opacidade dos meios não permite a observação do segmento posterior do globo ocular, nem a execução de outros exames como a angiografia fluoresceínica (AF) ou a tomografia de coerência ótica (OCT).

É um método não invasivo, fácil de executar em adultos e crianças, não é necessário recorrer a sedação ou anestesia geral, não necessita de meios óticos transparentes, é fiável, reprodutível e muito eficiente (obtêm-se bons resultados a baixo custo).

Quando realizado por oftalmologista com alguma experiência nas várias técnicas de execução, permite estudar diferentes patologias cujo diagnóstico e seguimento são de extrema importância. É o caso dos tumores intraoculares, da hemorragia do vítreo, do descolamento da retina e/ou da coroideia, dos traumatismos oculares e das doenças que afetam a órbita anterior, em especial o nervo ótico (NO) e os músculos oculomotores (MOM).

Não menos importante é o **exame cinético** da interface vítreorretina que avalia de uma forma dinâmica as interações que se estabelecem entre as diversas estruturas oculares durante e após o movimento dos olhos e/ou cabeça.

1.1 PROPRIEDADES DOS ULTRASSONS

O exame ecográfico baseia-se no princípio da reflexão do som. O ultrassom corresponde a uma vibração mecânica de alta frequência (superior a 20 KHz) inaudível para o ouvido humano e produzido a partir de uma fonte vibratória situada num transdutor – **sonda**, que transforma impulsos elétricos em mecânicos e vice-versa. Este fenómeno é conhecido como efeito piezoelétrico.

A propagação das ondas acústicas provoca vibrações do meio que atravessa, produzindo deflexões longitudinais com áreas de compressão e rarefação alternadas e periódicas e cujas características físicas são:

- Comprimento de onda (λ) distância entre fenómenos de rarefação e compressão.
- **Frequência** (f) número de oscilações produzidas num segundo, medida em hertz (Hz).
- **Período** (T) tempo em que o mesmo fenómeno se repete (inverso da frequência).
- Amplitude (a) intensidade da onda sonora.

A frequência determina a capacidade da ecografia em discriminar dois pontos próximos – resolução espacial. Deste modo, quanto maior a frequência, menor o comprimento de onda, menor a penetração nos tecidos, mas a resolução é melhor. Como o olho é um órgão superficial interessa-nos obter a melhor resolução possível e por isso usamos sondas de 10, 20, 35 ou 50 MHz, estas duas últimas utilizadas em ecografia de alta resolução - ultrabiomicroscopia (UBM) para estudo do segmento anterior do globo ocular.

A **impedância acústica** (Z) corresponde à resistência que um determinado meio oferece à passagem do som (velocidade do som x densidade do meio).

A velocidade do som (c) é constante para cada material e depende das suas propriedades elásticas e densidade. Assim, o ultrassom transmite-se através dos meios oculares a diferentes velocidades (mais rapidamente nos meios sólidos do que nos líquidos) e à medida que encontra as diferentes estruturas intraoculares sofre processos de absorção, transmissão e reflexão - ECO, que retorna à sonda e é convertido em sinal elétrico. Este é depois amplificado, o que possibilita a reconstrução de uma imagem bidimensional que é apresentada no monitor em tempo real (fig 1).

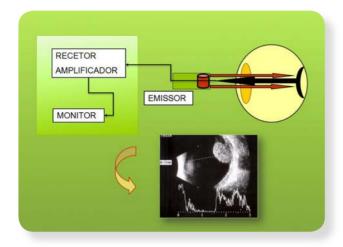


Fig 1 - Emissão, reflexão (eco) e receção do ultrassom

1.2. CARACTERÍSTICAS DO ECO

A reflexão do som ocorre sempre que este, no seu trajeto, encontra interfaces com velocidade de transmissão e impedância acústica diferentes, o que depende dos tecidos que atravessa, por exemplo cristalino (sólido) - vítreo (líquido) - retina (sólido).

VELOCIDADE DE TRANSMISSÃO DO SOM NOS DIFERENTES TECIDOS

- Água 1480 mm/seg
- Aquoso/Vítreo 1532 m/seg
- Tecidos moles 1550 m/seg
- Sangue 1585 m/seg
- Cristalino 1641 m/seg
- Osso 3500 m/seg

As características do eco observado no monitor (sob a forma de **pontos em modo B** e **deflexões da linha de base em modo A**), dependem de vários fatores:

- Absorção e refração do ultrassom
- Ângulo de incidência do ultrassom
- Tamanho, forma e consistência da interface

1.2.1. ABSORÇÃO E REFRAÇÃO DO ULTRASSOM

O som é em parte absorvido pelo meio que atravessa. Quanto mais denso é esse meio, maior a absorção e menor será a transmissão para as estruturas posteriores, que se irão apresentar menos brilhantes em modo B e com deflexões

menores em modo A.

As pálpebras constituem o primeiro obstáculo à progressão do som, mas na nossa experiência não encontramos diferenças significativas entre o exame realizado sobre as pálpebras ou sobre a córnea/conjuntiva. Já um cristalino opacificado provoca grande absorção do som e impede a obtenção de um exame do segmento posterior com qualidade suficiente, pelo que é necessário usar incidências que passem ao lado do cristalino.

Corpos estranhos intraoculares ou interfaces com densidade osso ou cálcio (osteoma, retinoblastoma, drusen do nervo ótico) impedem também a transmissão do som para além delas tendo como consequência a presença de um cone de sombra posterior à lesão— *shadowing* (fig 2).

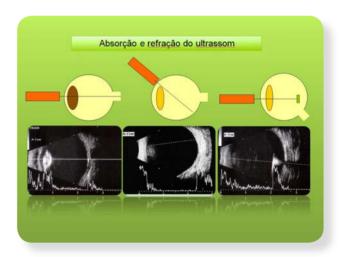


Fig 2 - Ecograma axial através do cristalino; ecograma para-axial; ecograma através de uma estrutura hiperreflectiva com cone de sombra posterior

1.2.2. ÂNGULO DE INCIDÊNCIA DO ULTRASSOM

O ângulo de incidência do ultrassom é um dos fatores que influencia o brilho (modo B) e a amplitude (modo A) do eco devolvido. Assim, a sonda deve ser colocada sempre que possível, de forma perpendicular à superfície a estudar. Quando colocada de forma oblíqua, parte do som é refletido mas não retorna à sonda e a deflexão obtida é de menor amplitude. Portanto, quando é importante estudar a periferia da retina deve o doente olhar na direção da lesão, de forma a possibilitar a colocação correta da sonda e otimizar o exame (fig 3).

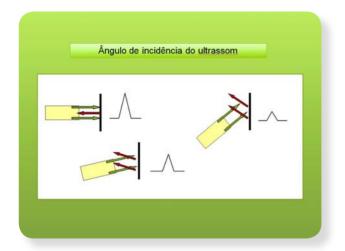


Fig 3 – Ângulo de incidência do ultrassom

1.2.3. TAMANHO, FORMA E CONSISTÊNCIA DA INTERFACE

Em relação ao terceiro ponto, sabemos que quanto mais plana a superfície a estudar, maior o brilho (modo B) e a amplitude (modo A) do eco. Com uma interface curva, irregular ou esférica há grande dispersão do som e mesmo com a sonda perpendicular o sinal de retorno será sempre de pior qualidade. O caso extremo ocorre na presença de interface esférica como é o exemplo de um chumbo intraocular, o que provoca a reverberação ou reduplicação dos ecos e impossibilita o correto exame das estruturas posteriores (fig 4).

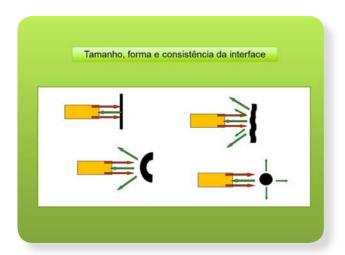
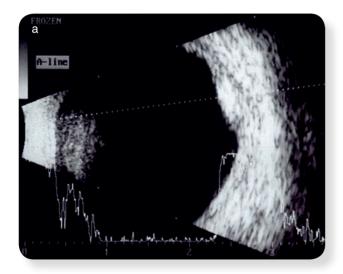
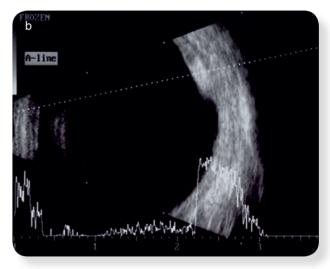


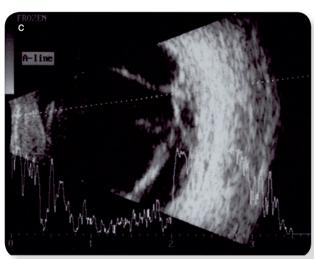
Fig 4 – Interface plana, irregular, curva e esférica

Apesar da ecografia modo B ser um exame bidimensional, o médico oftalmologista deve sempre pensar a três dimensões, de forma a identificar e localizar qualquer alteração à normal ecoestrutura do globo ocular e órbita. Para isso é necessário alguma experiência e dominar as várias técnicas de posicionamento da sonda, de forma a poder comparar e cruzar a informação proveniente dos vários quadrantes e meridianos.

2 - O EXAME ECOGRÁFICO


2 - O EXAME ECOGRÁFICO


A ecografia de contacto modo A e modo B, realizada sobre as pálpebras (com interposição de gel para melhor transmissão do som), ou sobre a córnea/conjuntiva (com anestésico tópico), oferece-nos um conjunto valioso de informações desde que o exame seja realizado com método, tempo e conhecimento prévio da história e observação clínica do doente, assim como das dúvidas a esclarecer.


Sempre que realizamos uma ecografia devemos ter presentes alguns princípios básicos:

• Em relação à posição do doente, o exame

- torna-se mais confortável se este estiver deitado e o médico à cabeceira com o ecógrafo do seu lado (direito ou esquerdo conforme a preferência).
- Com sondas de maior frequência obtém-se melhor resolução, necessária para estudar a parede ocular, nervo ótico e músculos oculomotores (fig 5).
- A variação do ganho (amplificação do sinal) permite otimizar o segmento a estudar. Perante uma hemorragia do vítreo, com o ganho aumentado detetamos o sangue mesmo pouco denso, mas se diminuirmos o ganho identificamos também um provável edema da mácula (fig 6).

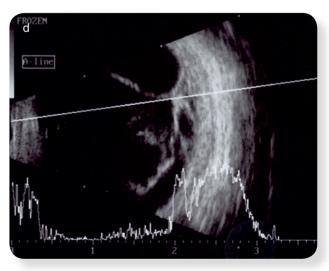
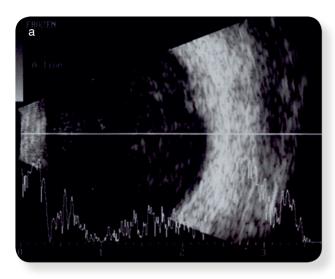



Fig 5 – Variação da frequência: a) nevus da coroideia (sonda de 10 MHz); b) nevus da coroideia (sonda de 20 MHz); c) DR tracional (sonda de 10 Mhz); d) DR tracional (sonda de 20 MHz)

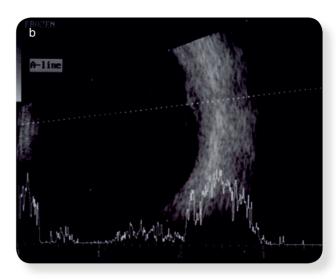


Fig 6 – Hemovítreo: a) ganho máximo deteta o sangue disperso na cavidade vítrea; b) ganho diminuído melhora a identificação do espessamento da mácula.

- A sonda apresenta uma marca junto à sua extremidade e que corresponde à parte superior do ecograma.
- Ao realizar a leitura de um ecograma o local onde a sonda está encostada corresponde ao lado esquerdo da imagem e no lado direito ficará a área do segmento posterior a estudar.
- No ecograma deve ser registada a incidência usada, assim como o quadrante ou meridiano estudados.

2.1. AVALIAÇÃO TOPOGRÁFICA

Esta avaliação, realizada em modo B é fundamental para localizar e estudar a morfologia e extensão das lesões que podem ser encontradas no segmento posterior. Basicamente são utilizadas três incidências: Transversal (T), Longitudinal (L) e Axial (A).

INCIDÊNCIAS TRANSVERSAIS

O exame deve ser iniciado pelas **incidências transversais**, o que permite fazer um varrimento dos quatro quadrantes desde o NO até à periferia e de acordo com a seguinte ordem:

- Quadrantes superiores (QS) sonda colocada sobre a pálpebra inferior, marca voltada para o nariz.
- Quadrantes nasais (QN) sonda colocada sobre o canto externo, marca voltada para as 12 horas.
- Quadrantes inferiores (QI) sonda colocada

- sobre a pálpebra superior, marca voltada para o nariz.
- Quadrantes temporais (QT) sonda colocada sobre o canto interno, marca voltada para as 12 horas.

Neste exemplo (fig 7), no olho direito (OD), com a sonda colocada sobre o canto interno com a marca voltada para as 12H, a interpretação do ecograma será:

- No lado esquerdo o ponto da parede ocular anterior onde a sonda está encostada (sem interesse para o estudo).
- No lado direito quadrantes temporais, entre as 12H (parte superior do ecograma) e as 6H (parte inferior do ecograma) e com o músculo reto externo (MRE) às 9H (centro)

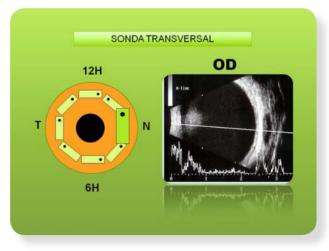


Fig 7 - Incidência Transversal Temporal (sonda colocada sobre o canto interno com a marca voltada para as 12H)

INCIDÊNCIAS LONGITUDINAIS

As **incidências longitudinais** permitem avaliar individualmente cada meridiano e localizar a lesão no sentido antero-posterior, portanto mais longe ou mais perto do NO. Como pontos de referência temos o NO que se localiza na parte inferior do ecograma e a inserção dos MOM que se localiza na parte superior do ecograma.

A sonda é colocada de forma a apontar para o meridiano a estudar, sempre com a marca voltada para o centro da córnea.

Neste exemplo (fig 8), no OD com a sonda colocada no canto interno, marca voltada para o centro da córnea para estudar o meridiano das 9H, a interpretação do ecograma será:

- No lado esquerdo o ponto da parede ocular anterior onde a sonda está encostada (sem interesse para o exame).
- No lado direito o meridiano das 9H desde a periferia (inserção do MRE) na parte superior do ecograma até ao NO na parte inferior do ecograma.

Esta incidência (longitudinal para as 9H no OD e longitudinal para as 3H no OE), está também indicada para estudar a mácula.

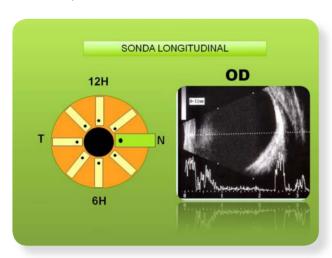


Fig 8 - Incidência Longitudinal para estudar o meridiano das 9H (sonda colocada no canto interno, marca voltada para o centro da córnea)

INCIDÊNCIAS AXIAIS

As **incidências axiais**, permitem estudar o eixo antero-posterior, desde o centro da córnea,

passando pelo cristalino e até ao NO.

Para avaliar a mácula a sonda é colocada no centro com a marca voltada para o nariz. Assim, ao realizar a leitura do ecograma teremos (fig 9):

- Na parte esquerda o ponto onde a sonda encosta na pálpebra ou córnea sendo possível identificar a face posterior do cristalino ou o cristalino na sua totalidade se este se encontrar opacificado, como é o caso exemplificado. Não esquecer que com esta incidência verifica-se grande absorção do som pelo cristalino, o que diminui a qualidade e fiabilidade do exame.
- Na parte direita do ecograma o NO ao centro; as 3H (nasal) na parte superior e as 9H (temporal) na parte inferior. A mácula localiza-se do lado temporal do NO, portanto entre o centro e a parte inferior (seta).

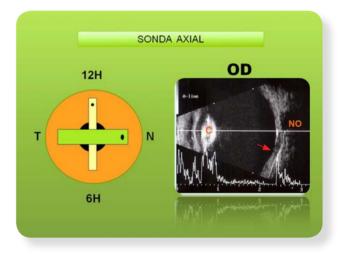


Fig 9 - Incidência Axial Horizontal (sonda com a marca voltada para o nariz)

Em conclusão, a **Ecografia modo B** (Bidimensional) possibilita a análise das dimensões e morfologia do GO, da topografia e dimensões de lesões do segmento posterior e órbita anterior.

As alterações à normal ecoestrutura do GO e órbita traduzem-se pela presença de ecos anómalos, sob a forma de membranas, pontos ou massas (fig 10).

 São exemplos de ecos de membrana o descolamento posterior do vítreo (DPV), o descolamento de retina (DR) e as

- membranas fibrovasculares da retinopatia diabética (RD).
- São exemplos de ecos de pontos o hemovítreo (HV), a hialosis asteroid (HA) e a vitrite/endoftalmite.
- São exemplos de ecos de massa os tumores e os corpos estranhos intraoculares (CEIO).

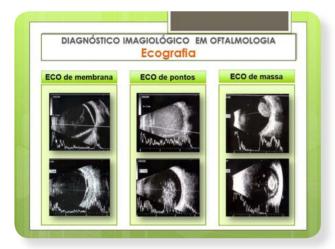


Fig 10 - Eco de membrana (descolamento de retina e membranas pré-retinianas); eco de pontos (hemovítreo e hialosis asteroid); eco de massa (melanoma, cristalino luxado)

2.2. AVALIAÇÃO QUANTITATIVA

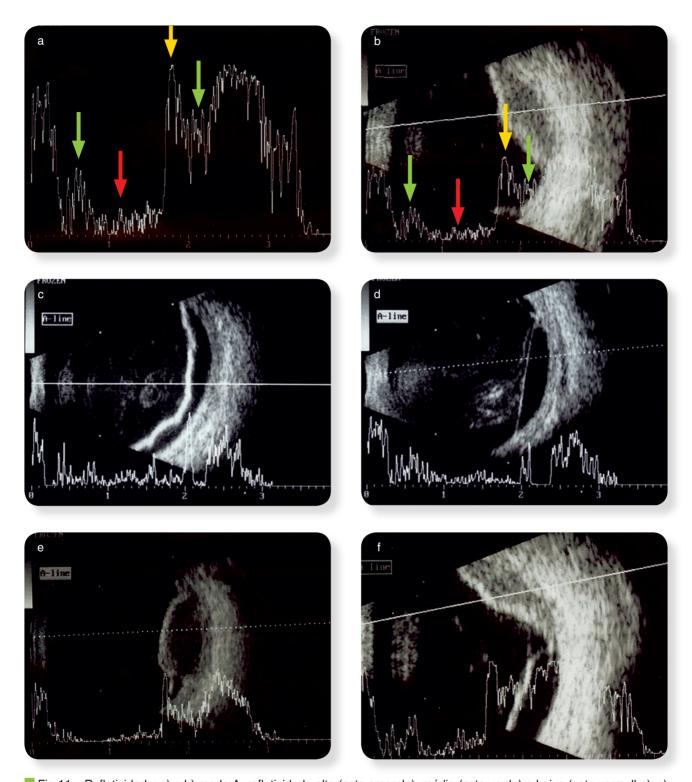
Esta avaliação, realizada em modo A (Amplitude) faz uma análise quantitativa das lesões, pois permite medir e comparar a refletividade/ amplitude do eco, assim como estudar a estrutura interna e atenuação do eco nas formações sólidas, em especial nos tumores da retina, coroideia e órbita.

REFLETIVIDADE - corresponde à amplitude do eco em condições ótimas (feixe do ultrassom perpendicular à lesão). Classifica-se em alta (seta amarela), média (seta verde) e baixa (seta vermelha), de acordo com a amplitude da deflexão comparando-a com a linha de base (ausência de eco) e o eco da parede ocular (eco máximo de 100%). O modo A+B possibilita realizar a análise quantitativa e topográfica no mesmo ecograma (fig 11 a-b)

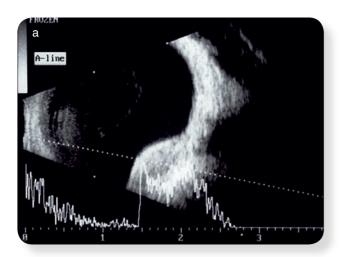
A avaliação da refletividade é fundamental para o diagnóstico diferencial entre:

• Ecos de membrana, como no descolamento

- de retina ou na membrana vítrea com tração vítreorretiniana (fig. 11 c-d)
- Ecos de massa, como no melanoma ou metástase da coroideia (fig e-f)
- ESTRUTURA INTERNA correlaciona-se com a estrutura histológica da lesão e depende da dimensão e presença de múltiplas interfaces no seu interior (grupos celulares, vasos, septos, cálcio).


Uma lesão diz-se homogénea ou regular quando ecos próximos apresentam amplitude idêntica, e heterogénea ou irregular quando a amplitude é variável (fig 12). A análise da estrutura interna de uma lesão sólida é essencial para o diagnóstico diferencial dos vários tumores da retina e coroideia.

e ATENUAÇAO DO ECO – corresponde ao comportamento dos ecos à medida que o ultrassom atravessa as várias estruturas patológicas ou não. As lesões sólidas muito densas como o melanoma da coroideia, provocam grande atenuação do eco, cuja amplitude diminui abruptamente (ângulo K agudo). Em modo B este fenómeno traduzse pela presença de um cone de sombra posterior à lesão, também bem evidente nos corpos estranho metálicos intraoculares e lesões com cálcio/osso (DMI, drusen do disco ótico, osteoma, retinoblastoma) (fig 13).


2. 3. AVALIAÇÃO CINÉTICA

O **exame cinético** em modo B e em tempo real complementa e otimiza a informação fornecida pela ecografia, ao identificar alterações que ocorrem durante ou após o movimento dos olhos – *after movements*, nomeadamente no DR, no DPV e nas trações VR com ou sem rasgaduras da retina.

Em modo A, é por vezes possível identificar movimentos espontâneos traduzidos por oscilações na amplitude dos ecos internos de tumores muito vascularizados, como é o caso de melanomas de grandes dimensões – flickering.

■ Fig 11 – Refletividade: a) e b) modo A, refletividade alta (seta amarela), média (seta verde) e baixa (seta vermelha); c) membrana de máxima refletividade (descolamento de retina); d) membrana de média refletividade (tração VR); e) melanoma da coroideia (refletividade baixa/média); f) metástase da coroideia (refletividade média/alta

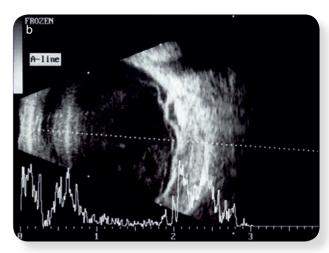
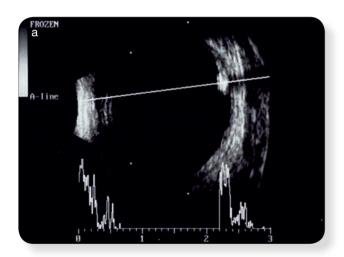
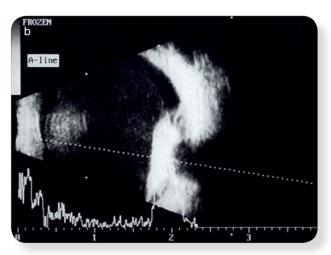
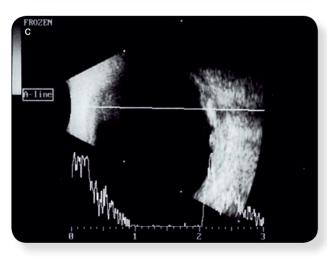





Fig.12 – Estrutura interna: a) homogénea no melanoma da coroideia; b) heterogénea na degenerescência macular da idade-maculopatia disciforme.

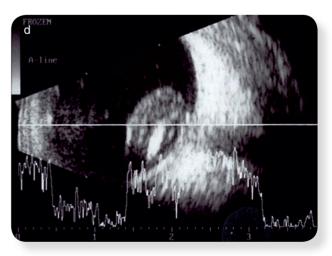


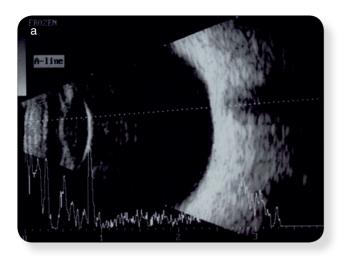
Fig 13 – Atenuação do eco (cone de sombra em modo B): a) corpo estranho intraocular; b) retinoblastoma; c) DMI disciforme; d) cristalino luxado e opacificado.

2.4. O EXAME ECOGRÁFICO NORMAL

O exame ecográfico de contacto transpalpebral modo A e B do globo ocular normal varia de acordo com as incidências escolhidas:

Na incidência axial, os primeiros ecos mal individualizados correspondem à pálpebra/ córnea. A câmara anterior (humor aquoso) não apresenta refletividade e o segundo conjunto de ecos corresponde ao plano íris/ face anterior do cristalino. Este, na ausência de catarata também não apresenta refletividade. Posteriormente é possível identificar um eco de amplitude alta correspondente à face posterior do cristalino, depois a cavidade vítrea sem ecos significativos - "silêncio vítreo" e por fim o nervo ótico sob a forma de um cone hiporrefletivo. A parede ocular (retina/coroideia/esclerótica) apresenta um conjunto de ecos de amplitude máxima. assim como a gordura orbitária (fig 14 a). No olho pseudofáquico identificam-se ecos de máxima amplitude correspondentes à lente intraocular no saco capsular e que se prologam para a cavidade vítrea - ecos de reverberação (fig 14 b).

Nas incidências transversais e longitudinais não se visualizam os ecos correspondentes à córnea/CA/cristalino, uma vez que a sonda é colocada em posição paraxial. É também possível identificar os MOM, hiporrefletivos, sob a forma de elipse nas incidências transversais e sob a forma fusiforme nas longitudinais (fig.15).


2.5. BIOMETRIA

A biometria possibilita não só a medição do comprimento axial ou diâmetro ântero-posterior do globo ocular, mas também a medição de lesões intraoculares, em especial de tumores da coroideia. Assim, é possível de uma forma rápida, não invasiva e económica acompanhar a sua evolução e monitorizar a resposta ao tratamento.

 COMPRIMENTO AXIAL (CA) No adulto, o comprimento axial varia entre 22-24 mm. Nos olhos míopes verifica-se o seu aumento, acompanhado por vezes de uma alteração na morfologia do GO que se traduz pela presença de um estafiloma posterior – diferença de curvatura a nível do polo posterior. O estafiloma pode localizar-se ao NO ou à retina nasal/temporal (fig 16 a). Nos olhos hipermétropes ou na microftalmia, pelo contrário, verifica-se uma diminuição do CA acompanhado nos casos extremos (nanoftalmos) de espessamento difuso da parede ocular (fig 16 b).

A cirurgia de descolamento de retina provoca também uma alteração na biometria, sobretudo quando se realiza a técnica da depressão circular *(cerclage)*. É então evidente a identação do GO e um aumento do CA (fig 17 a).

Nos casos de hipotonia, qualquer que seja a causa, verifica-se uma redução marcada do CA e procidência do NO (fig 17 b). O caso extremo, quase sempre secundário a patologia inflamatória ou traumática, corresponde à atrofia do globo ocular - phthisisbulbi (fig 17 c). Nestes casos, identifica-se também grande espessamento da parede ocular com áreas de calcificação e desorganização de todo o segmento posterior, frequentemente acompanhado de descolamento de retina (fig 17 d).

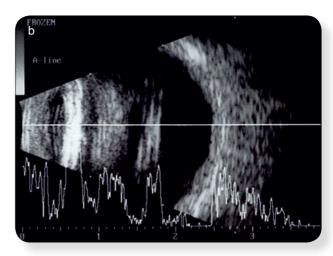
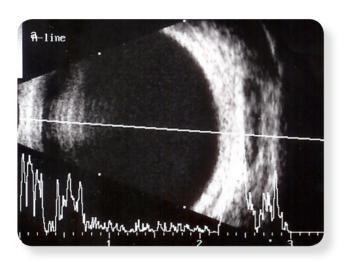



Fig.14–Ecografia normal: a) olho fáquico; b) olho pseudofáquico – ecos de reverberação

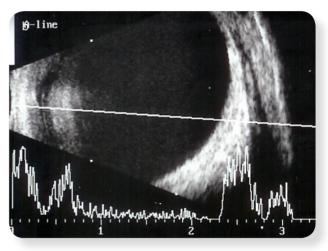
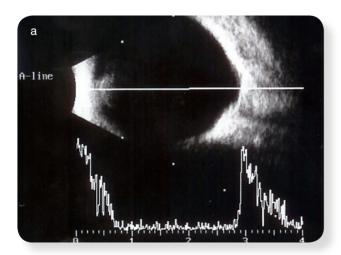



Fig 15 – Músculo Reto Interno: a) incidência transversal; b) incidência longitudinal

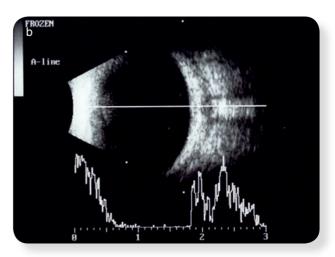
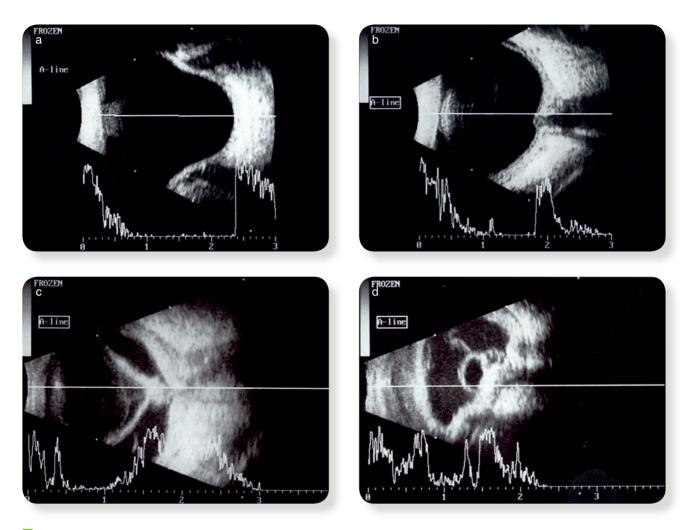



Fig 16 – Comprimento Axial: a) miopia - estafiloma posterior nasal ao DO; b) nanoftalmos - espessamento da parede ocular.

■ Fig 17 – Comprimento Axial: a) aumento do CA após cirurgia de DR *(cerclage)*; b) diminuição do CA na hipotonia, com procidência do NO; c) e d) *phthisis bulbi* com parede espessada, calcificações e descolamento de retina

3 - TUMORES INTRAOCULARES E LEUCOCÓRIA

3 - TUMORES INTRAOCULARES E LEUCOCÓRIA

3.1 TUMORES DA ÚVEA

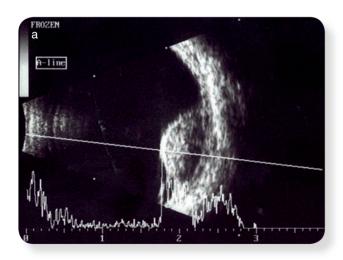
O diagnóstico dos tumores oculares, em especial os da coroideia, constitui um permanente desafio para o médico oftalmologista. Lesões com características clínicas semelhantes podem na verdade corresponder a entidades bem diferentes e cujo tratamento exige cuidados diferenciados. A ecografia modo A e B permite não só fazer o diagnóstico diferencial entre os vários tumores localizados à coroideia, mas também diagnosticar outras lesões que simulam tumores, como é o caso da degenerescência macular da idade (DMI) e o descolamento da coroideia (DC).

Através da análise topográfica (modo B) avaliam-se as dimensões, forma, localização e também a extensão extraocular.

Através da análise quantitativa (modo A) estuda-se o perfil acústico da lesão, definido pela refletividade e estrutura internas e coeficiente de atenuação do som (ângulo K).

O estudo detalhado de todas as lesões sólidas ou quísticas da parede ocular é importante para o diagnóstico e também para o controlo após tratamento (fig 18).

Os tumores da coroideia mais frequentes no adulto são o melanoma, o hemangioma, as metastases e o nevus.

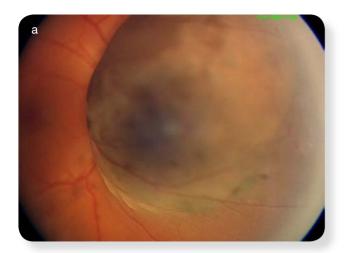

3.1.1. MELANOMA DA COROIDEIA

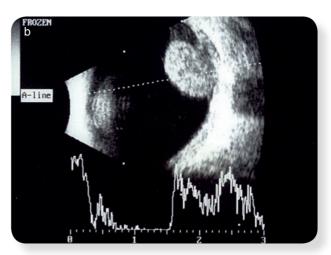
MORFOLOGIA

O **melanoma da coroideia** é um tumor melanocítico maligno que pode ocorrer em qualquer localização.

- A morfologia é variável mas, mais frequentemente surge como uma massa pigmentada, em forma de cúpula, procidente na cavidade vítrea e cuja espessura varia entre 0.5 e 15 mm (fig 19 a-d).
- A forma bosselada é mais rara e o típico aspecto de cogumelo só é identificado quando existe rotura da membrana de Bruch (fig 19 e-f).

O tratamento e prognóstico dependem das dimensões do tumor, da sua localização, assim como da presença de extensão extraescleral e descolamento de retina associado (fig 20). A metastização via hematogénea faz-se preferencialmente para o fígado e pulmão.





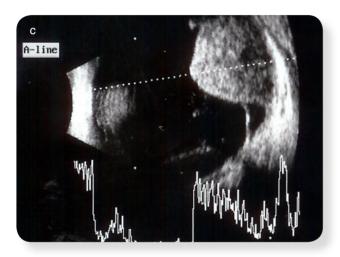

■ Fig 18 – Melanoma da coroideia: a) antes do tratamento; b) após braquiterapia – agravamento com aumento das dimensões e hemovítreo, o que motivou a enucleação.

Fig 19 – Melanoma da coroideia: a) melanoma pigmentado; b) melanoma amelanótico, c) e d) melanoma em cúpula; e) melanoma bossselado; f) melanoma em forma de cogumelo.

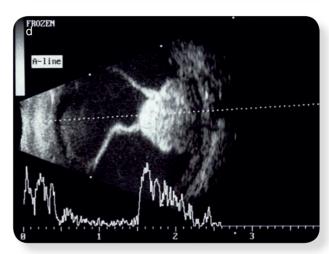
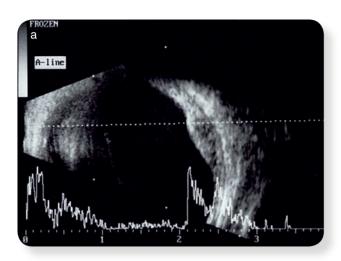


Fig 20 – Melanomas com pior prognóstico: a) e b) melanoma junto ao NO; c) e d) melanomas de grandes dimensões associados a descolamento de retina.


De acordo com o Collaborative Ocular Melanoma Study (COMS), os melanomas classificamse segundo o seu tamanho em:

- Pequenos espessura entre 1 e 3 mm.
- Médios espessura superior a 3 mm e inferior a 10 mm.
- Grandes espessura superior a 10 mm ou diâmetro basal superior a 16 mm.

PERFIL ACÚSTICO

A análise do perfil acústico compreende a avaliação do comportamento dos ecos à medida que o som se propaga através da lesão e é realizada em modo A.

- O eco anterior correspondente à retina/superfície do tumor, é de máxima amplitude e sofre atenuação marcada (ângulo K agudo), com apagamento dos ecos posteriores (fig 21).
- A refletividade interna é baixa/média e a estrutura interna é homogénea.
- Quanto maior o tumor, maior a refletividade e mais irregular a sua estrutura interna, devido a maior vascularização e fenómenos de necrose intratumoral (fig 22 a-b). O mesmo acontece nos melanomas tratados com placa radioativa ou feixe de protões (fig 22 c-d).

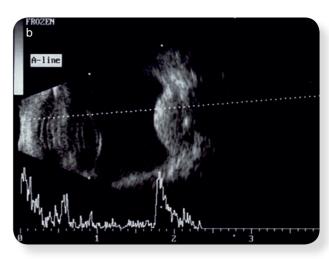
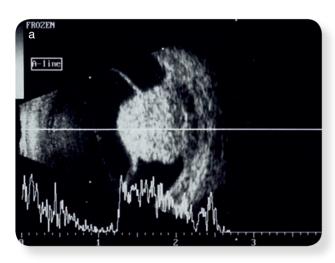
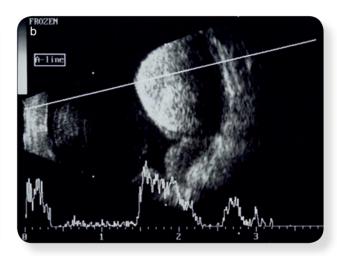
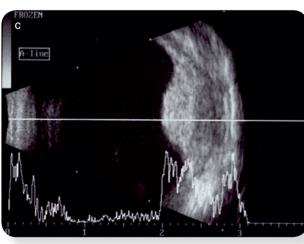





Fig 21 – Perfil acústico de melanoma: a) e b) eco anterior de máxima amplitude com atenuação posterior, estrutura interna homogénea.

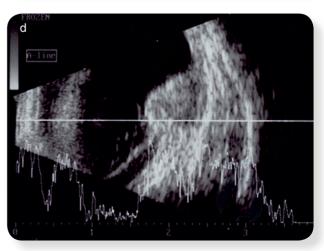
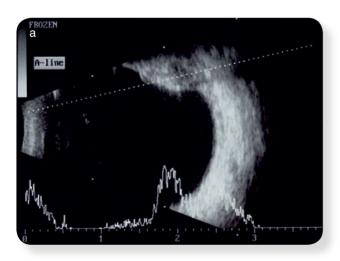


Fig 22 – Estrutura interna: a) e b) melanoma de grandes dimensões com eco anterior de máxima amplitude, atenuação posterior, estrutura interna heterogénea e escavação coroideia; c) e d) melanomas pós braquiterapia com refletividade interna mais elevada.

3.1.2. MELANOMA DO CORPO CILIAR

O melanoma do corpo ciliar apresenta sintomas e sinais clínicos específicos que facilitam o diagnóstico – vasos episclerais dilatados, massa pigmentada atrás da íris, catarata setorial, extensão para a íris, câmara anterior ou esclerótica.

A sua localização muito periférica torna a ecografia de contacto difícil de executar, sobretudo se forem temporais ou inferiores pois o nariz e a arcada supraciliar dificultam o posicionamento quase horizontal da sonda. Nestes casos o exame ideal é a UBM que possibilita o estudo de todo o segmento anterior.


 São lesões sólidas em forma de cúpula com o perfil acústico já referido e podem desenvolver extensão posterior para a pars plana ou coroideia (melanoma cílio-coroideu) (fig 23).

3.1.3. MELANOCITOMA DO NERVO ÓTICO

O melanocitoma do NO é um tumor melanocítico benigno, muito pigmentado, não vascularizado, localizado geralmente ao DO e que pode ser confundido clinicamente com melanoma.

 São lesões sólidas, sobrepostas ao disco ótico, em forma de cúpula mas pouco elevadas, com alta refletividade e estrutura interna homogénea (fig 24).

A ecografia é importante para o diagnóstico e para a monitorização do seu crescimento. Como estes tumores raramente sofrem transformação maligna mantêm-se inalterados ao longo dos exames de controlo.

Flg 23 – Melanoma do corpo ciliar e cílio-coroideu.

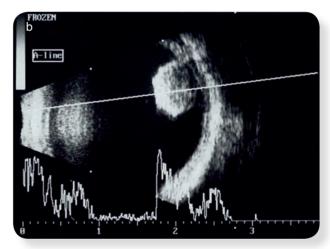
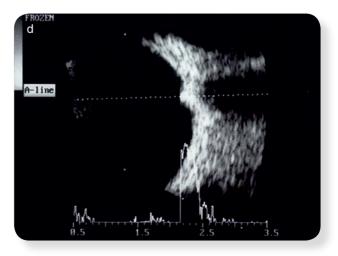



Fig 24 – Melanocitoma do nervo ótico.

3.1.4. HEMANGIOMA DA COROIDEIA

O hemangioma circunscrito da coroideia é um tumor vascular benigno, inicialmente assintomático até que surjam sintomas associados a edema/descolamento da mácula.

- Localiza-se geralmente no polo posterior, sob a forma de uma massa convexa de cor alaranjada, procidente na cavidade vítrea e com espessura entre 0.5 e 5 mm (fig 25 a-b).
- Pode estar associado a descolamento de retina ou hemovítreo.
- Raramente se observa escavação coroideia ou apagamento dos ecos posteriores.
- O eco anterior é de máxima amplitude, sem atenuação, a refletividade interna é alta e a estrutura interna é homogénea (fig 25 c-d).

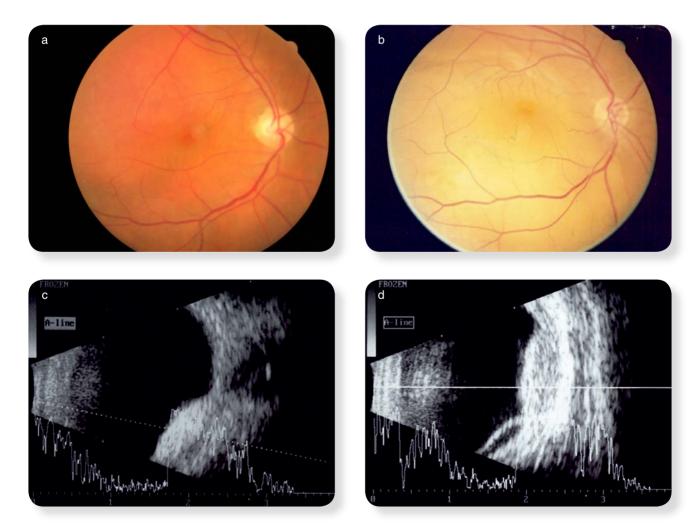
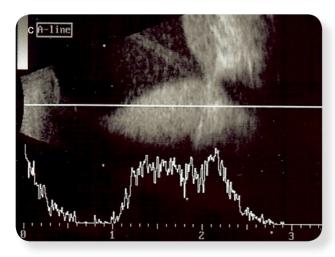


Fig 25 - Hemangioma da coroideia: a) envolvendo a mácula b) associado a DR.

O hemangioma difuso da coroideia – síndrome de Sturge Weber, na sua forma completa é caracterizado pela presença de:


- Nevus flammeus que pode atingir o território dos 3 ramos do trigémeo (fig 26 a), com hipertrofia dos tecidos moles e displasia óssea.
- Hemangioma difuso da coroideia que se pode complicar com glaucoma, descolamento de retina exsudativo ou hemovítreo.
- Hemangiomatose meníngea ispsilateral (fig 26 b), responsável por convulsões, atraso mental e hemiparésia.

A ecografia põe em evidência o espessamento difuso da coroideia a nível do polo posterior, caracterizado por refletividade interna alta, estrutura interna homogénea e sem apagamento dos ecos posteriores ou calcificações (fig 26 c-d).

O diagnóstico é clínico e imagiológico e geralmente não oferece dúvidas, mas nos casos atípicos é importante excluir infiltração linfóide ou leucémica da coroideia, esclerite difusa posterior e o síndrome de efusão uveal.

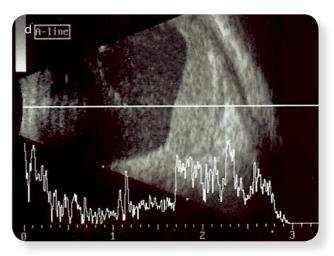


Fig 26 – Síndrome de Sturge Weber completo: a) e b) pele, meninges e coroideia; c) e d) espessamento difuso da coroideia (alta refletividade) e hemovítreo (baixa refletividade)

3.1.5. METÁSTASES DA COROIDEIA

As **metástases da coroideia** disseminam maioritariamente a partir de carcinomas – mama na mulher e pulmão no homem, mas também de tumores do tubo digestivo, rim, tiroideia e próstata. Cerca de 25% das metástase são diagnosticadas ainda sem identificação do tumor primitivo.

- Localizam-se ao polo posterior, sob a forma de uma massa amelanótica procidente na cavidade vítrea, convexa ou placóide, uni ou multifocal, podendo envolver o DO (fig 27 a-b).
- O tamanho é variável e acompanham-se frequentemente de descolamento de retina exsudativo.
- Raramente ocorre escavação coroideia assim como apagamento dos ecos posteriores.
- O eco anterior é de máxima amplitude, sofrendo atenuação ligeira. A refletividade interna é média/alta e a estrutura interna é irregular (fig 27 c-d).

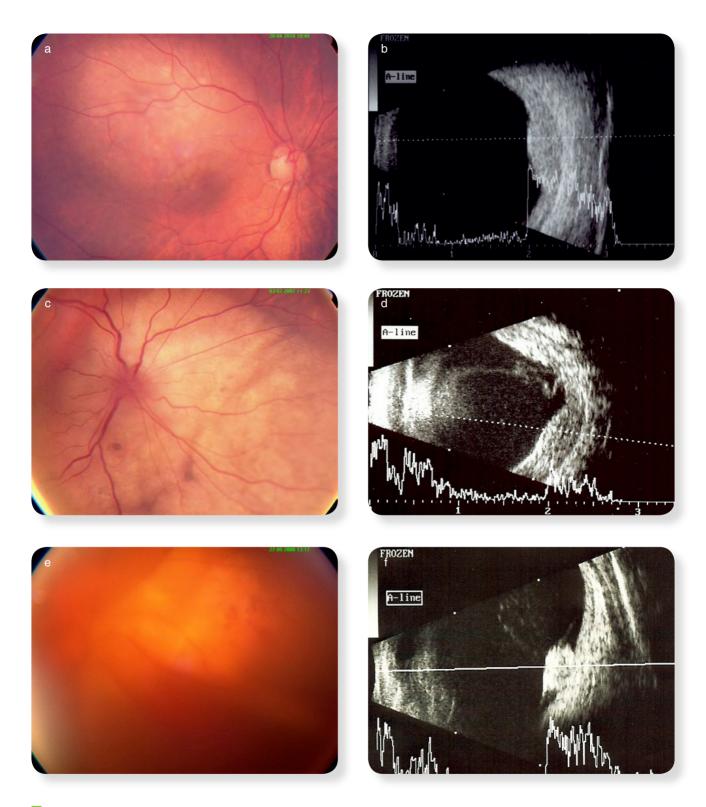
De referir que metástases de melanoma da pele podem ser pigmentadas e portanto muito semelhantes clinicamente ao melanoma primário da coroideia.

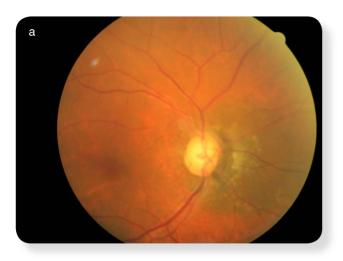
ECODOPPLER

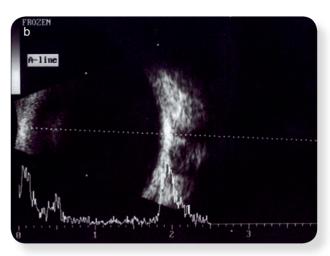
O efeito doppler foi descrito em 1842 por Johan C. Doppler, mas só passados mais de cem anos, na década de 80 começou a ser aplicado em medicina. Em oftalmologia este método permite estudar os vasos sanguíneos normais do globo ocular e órbita, em especial as artérias oftálmica, central da retina e ciliares posteriores, assim como as veias central da retina, oftálmica superior e inferior e vorticosas. Em oncologia, tem aplicação na caracterização do padrão vascular intratumoral.

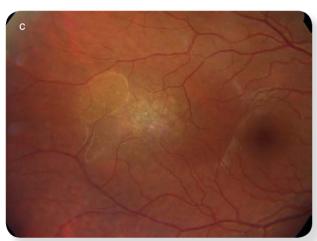
 Nos melanomas da coroideia, identifica-se um padrão de fluxo de baixa resistência (padrão "maligno"), com velocidades de fluxo mais elevadas na periferia do que no centro, comum a outros tumores extraoculares.

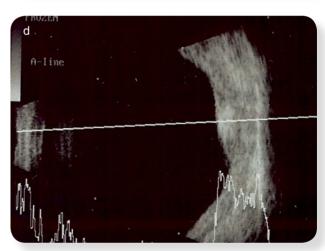
- Nos hemangiomas, os vasos são pequenos e de fluxo lento, pelo que não são detetados por ecodoppler.
- Nas metástases da coroideia, obtem-se um padrão de fluxo predominantemente arterial.

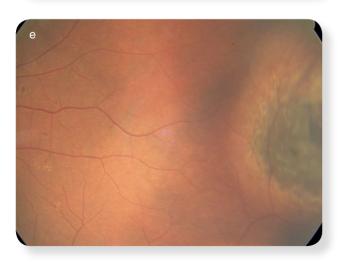



Fig 27 - Metástases da coroideia: a) e b) carcinoma do pulmão; c) e d) carcinoma da mama, e) e f) carcinoma do endométrio.


3.1.6. NEVUS DA COROIDEIA


Os **nevus da coroideia** ocorrem em 5% dos adultos. Não apresentam características ecográficas específicas pelo que este exame não é importante para o seu diagnóstico. No entanto,


permite excluir outros tumores e obter um exame de base essencial para o seguimento dos casos suspeitos.


 São lesões pigmentadas, planas ou com espessura inferior a 1.5 mm e refletividade interna alta (fig 28).

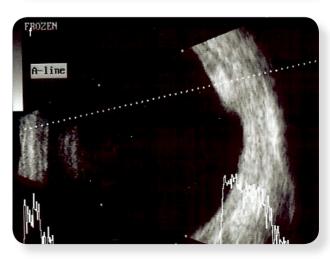


Fig 28 – Nevus da coroideia: a) e b) nevus peripapilar plano; c) a f) nevus temporal elevado

Apesar de benignos, os nevus podem sofrer transformação maligna sobretudo se apresentarem alguns sinais de risco:

- Espessura superior a 2 mm.
- Localização perto do NO.
- Fluido subretiniano.
- Pigmento laranja na superfície.
- Sintomas.

Nestes casos, é fundamental a vigilância com ecografia para avaliar as dimensões e com OCT para identificar a presença de drusen sinal de cronicidade/benignidade, ou fluido subretiniano sinal de risco (fig 29).

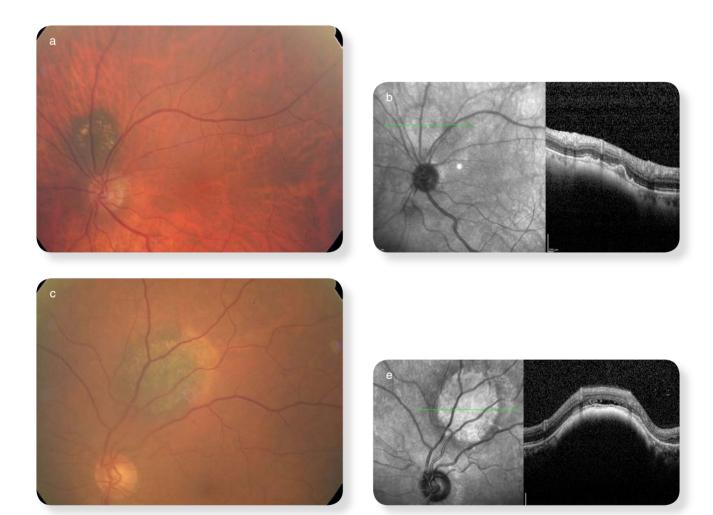


Fig 29 – Nevus da coroideia: a) e b) nevus peripapilar plano com drusen; c) e d) nevus peripapilar elevado com drusen e fluido subretiniano

3.2. TUMORES DA RETINA

3.2.1. HAMARTOMAS DA RETINA

O hemangioma capilar da retina é um tumor vascular benigno, localizado ao disco ótico ou à periferia da retina.

Lesões isoladas e unilaterais são geralmente mutações esporádicas, não associadas a alterações sistémicas.

Lesões bilaterais e multifocais obrigam à pesquisa de outros tumores a nível do SNC (hemangioblastoma do cerebelo) e outros órgãos (feocromocitoma, hipernefroma, quistos pancreáticos) - **Síndrome de von Hippel-Lindau**.

- O tumor apresenta-se como uma massa sólida, elevada em forma de cúpula, de cor avermelhada, com arteríola aferente e vénula eferente (fig 30 a).
- Quando localizado ao DO os vasos dilatados não estão presentes ou não são tão evidentes.
- A refletividade interna é média/alta e do ponto de vista ecográfico é difícil de distinguir de outros tumores intraoculares (fig 30 b).

Assim, o diagnóstico é essencialmente clínico e angiográfico, no entanto a ecografia permite seguir a evolução e detetar complicações como o descolamento de retina exsudativo ou tracional.

O hamartoma combinado da retina e EPR, é um tumor benigno congénito unilateral e unifocal que envolve a retina peripapilar e/ou a mácula e cujo diagnóstico ocorre na primeira década de vida.

 A ecografia não apresenta caracteristicas especificas, no entanto, põe em evidência o edema peripapilar e/ou macular, sem aumento da espessura do NO (fig 31).

O **astrocitoma** é um tumor benigno derivado da glia, frequentemente localizado na região peripapilar, de coloração esbranquiçada brilhante, devido ao seu conteúdo em cálcio. Pode ocorrer isoladamente ou associado a esclerose tuberosa.

 A ecografia identifica uma massa de contorno irregular, altamente refletiva e que condiciona apagamento dos ecos posteriores (fig 32).

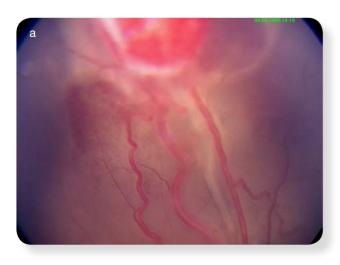
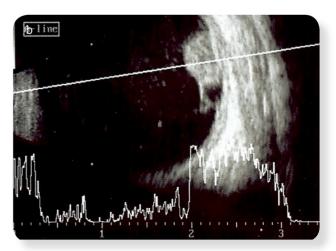



Fig 30 – Hemangioma capilar periférico com DR

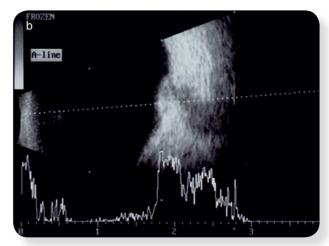


Fig 31 – Hamartoma combinado da retina e EPR peripapilar associado a exsudação e edema macular

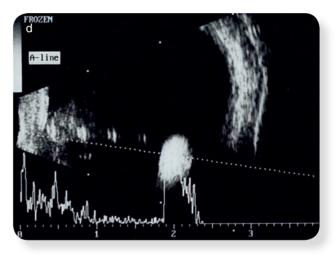
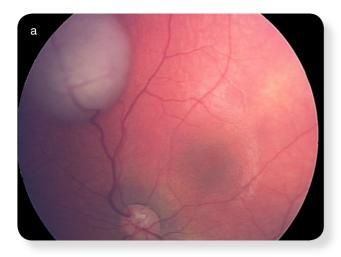


Fig 32 – Astrocitomas peripapilares

3.3. LEUCOCÓRIA

3.3.1 RETINOBLASTOMA

O retinoblastoma é o tumor intraocular mais frequente na criança, ocorre uni ou bilateralmente, tem apresentação uni ou multifocal e a idade média do diagnóstico é aos 18 meses. Existe história familiar em cerca de 7% dos casos, que são quase sempre bilaterais e com predisposição para outros tumores, em especial osteossarcomas dos ossos longos e pinealomas.


A apresentação clínica depende do tempo de evolução. No inicio são tumores retinianos pequenos e transparentes, que se tornam opacos com o crescimento. Surgem então como lesões sólidas, de coloração branca e com calcificações no seu interior. O sinal clínico mais comum é a leucocória em microftalmia.

Evoluem rapidamente adotando diversos padrões de crescimento:

- Exofítico para o espaço subretiniano o que provoca frequentemente descolamento de retina.
- Endofítico com disseminação para o vítreo e segmento anterior.
- Difuso, mais raro e mais difícil de diagnosticar pois não apresentam calcificações e podem simular uma uveíte.

O exame ecográfico permite fazer o diagnóstico, pois estes tumores apresentam características específicas:

 Globo ocular com dimensões normais para o grupo etário.

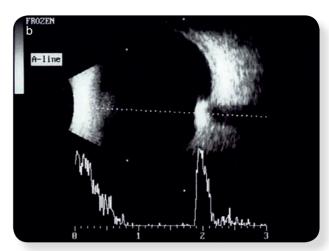


Fig 33 - Retinoblastoma

 Massa de contorno irregular, procidente na cavidade vítrea, de média ou alta refletividade interna de acordo com a presença de calcificações intratumorais. Quase sempre abundantes depósitos de cálcio condicionam refletividade máxima e apagamento dos ecos posteriores à lesão (fig 33 a-b).

3.3.2. DIAGNÓSTICO DIFERENCIAL DO RETINOBLASTOMA

O diagnóstico diferencial faz-se com outras patologias da criança que cursam com leucocória e/ou estrabismo.

- Catarata congénita é uma patologia uni ou bilateral, que exige sempre a exclusão de outras lesões do globo ocular, pelo que a realização de ecografia é mandatória. Quando isolada, a única alteração está relacionada com a opacificação do cristalino e/ou alteração do comprimento axial, bem evidente nos casos de microftalmia (fig 34)
- Persistência do vítreo primário hiperplásico – é uma patologia unilateral que se acompanha de catarata, diminuição do comprimento axial do GO, diminuição do diâmetro da córnea e processos ciliares proeminentes.

Com o exame ecográfico é possível realizar a biometria, demonstrar a presença de uma membrana retrolenticular e/ou uma banda de tecido fibroso mais ou menos densa, que se estende entre a cápsula posterior do cristalino e o nervo ótico e se pode complicar com DR total (fig 35).

Doença de Coats - é uma doença unilateral, com predominância pelo sexo masculino, caracterizada pelo desenvolvimento de anomalias vasculares – telangiectasias retinianas, com intensa exsudação lipídica o que condiciona o aparecimento de descolamentos de retina exsudativos (fig 36).

A ecografia identifica o DR exsudativo com opacidades subretinianas e exclui a presença de neoformação.

 Toxocaríase – é uma patologia infecciosa unilateral caracterizada clinicamente pela ocorrência de uma lesão retiniana esbranquiçada localizada à periferia ou no polo posterior, associada a vitrite.

Na ecografia podem ser encontradas várias alterações como, granuloma periférico hiperreflectivo, membrana vítrea entre o granuloma e o polo posterior e descolamento de retina tracional (fig 37).

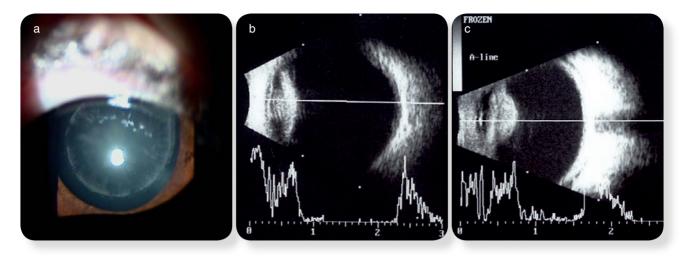


Fig 34 – Catarata congénita: a) catarata nuclear; b) catarata com comprimento axial aumentado e miopia; c) catarata com microftalmia.

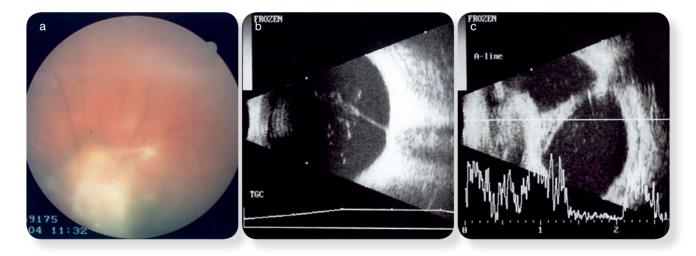


Fig 35 - Persistência do vítreo primário hiperplásico: a) retinografia; b) banda de tecido fibroso aderente ao DO; c) DR total em funil fechado.

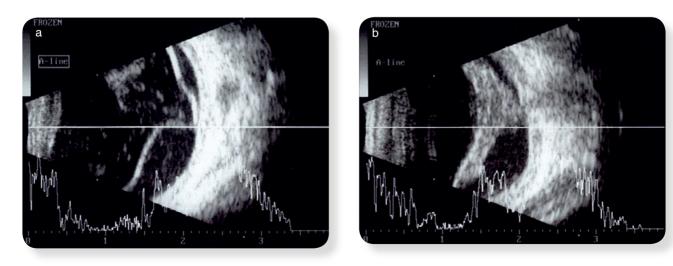
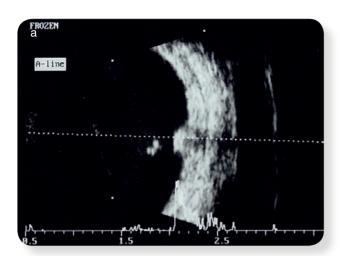



Fig 36 - Doença de Coats: a) e b) DR exsudativo

3 - TUMORES INTRAOCULARES E LEUCOCÓRIA

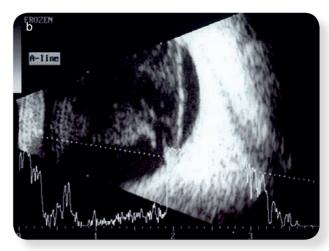


Fig 37 - Toxocaríase: a) granuloma periférico hiperreflectivo com atenuação posterior; b) membrana entre a periferia e o granuloma posterior.

Atlas de Ecografia Oftálmica Vol I - Ecografia do Segmento Posterior

4 - VÍTREO

4 - VÍTREO

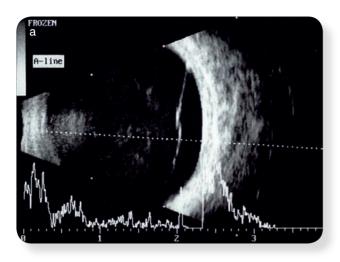
Em condições normais e no indivíduo jovem, a cavidade vítrea não apresenta refletividade significativa – "silêncio vítreo", pois está ocupada pelo gel vítreo que é transparente (constituído por água, ácido hialurónico e colagéneo). Por vezes é possível individualizar algumas opacidades pouco densas, muito móveis e sem tradução clínica. Em modo B e com ganho elevado aparecem como pequenos pontos brilhantes e em modo A como deflexões de baixa amplitude.

Fenómenos ligados à idade, miopia, traumatismos, inflamação ou hemorragia produzem ecos anormais semelhantes, sob a forma de pontos, bandas ou membranas, o que torna difícil o diagnóstico baseado apenas nessas alterações imagiológicas.

Nunca é demais referir que a informação clínica associada a cada caso é extremamente importante, pois permite melhorar e enquadrar a interpretação dos achados ecográficos.

4.1. DESCOLAMENTO POSTERIOR DO VÍTREO

O descolamento posterior do vítreo (DPV) define-se como a separação entre a membrana hialoideia posterior (HP) e a membrana limitante interna da retina (MLI). Este fenómeno é frequente, especialmente no sexo feminino com o envelhecimento. A perda das uniões vítreorretinianas seguida de liquefação (sinerese vítrea) e colapso anterior do vítreo é responsável pela sintomatologia clínica.


A ecografia permite não só confirmar o diagnóstico mas sobretudo estudar e classificar o DPV do ponto de vista cinético.

4.1.1. DESCOLAMENTO POSTERIOR DO VÍTREO PARCIAL

O gel vítreo apresenta algumas zonas de forte aderência vítreorretiniana - a base do vítreo (cerca de 3 mm anterior e posterior à ora serrata), o disco ótico, a mácula e as arcadas vasculares temporais. O processo de descolamento não ocorre de forma uniforme e simultâneo pelo que estas zonas podem manter a sua aderência

durante muito tempo. Com os movimentos oculares, a tração VR provoca fotópsias e nesta fase o exame ecográfico pode identificar várias alterações:

- Aderência VR sem tração, caracterizada pela presença de uma banda delgada de média refletividade aderente à retina periférica e que no exame cinético não causa o seu levantamento (fig 38).
- Aderência VR com tração mas sem rasgadura, com as mesmas características da anterior mas a provocar levantamentos pontuais da retina (fig 39).
- Rasgadura sem ou com tração VR, caracterizada pela presença de uma interface hiperrefletiva saliente na cavidade vítrea, contígua com a retina adjacente. Na maioria dos casos é possível identificar no exame cinético o vítreo aderente à sua extremidade livre (fig 40).
- Rasgadura com descolamento de retina, com as mesmas características da anterior, mas em que a retina adjacente à rasgadura se encontra descolada (fig 41).

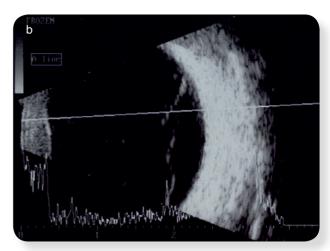


Fig 38 – Aderência VR sem tração

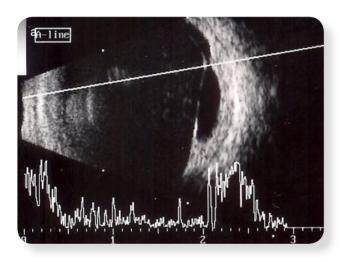
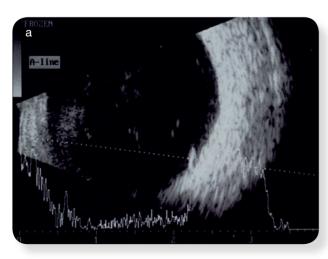



Fig 39 – Aderência VR com tração

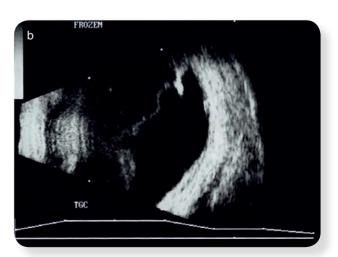


Fig 40 – Rasgadura da retina: a) sem tração VR; b) com tração VR

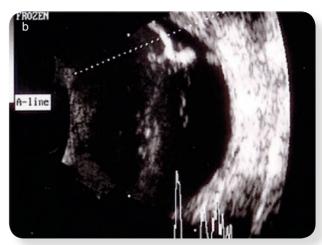
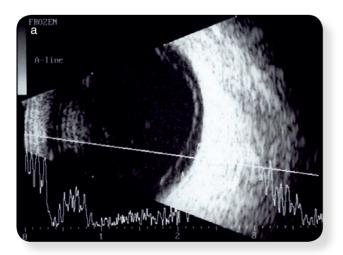


Fig 41 – Rasgadura com descolamento de retina localizado


4.1.2. DESCOLAMENTO POSTERIOR DO VÍTREO TOTAL

Nestes casos a HP encontra-se totalmente separada da retina, exceto na base do vítreo. Apresenta-se em modo A e B como uma delgada membrana de refletividade média, muito móvel, com movimentos ondulantes e sem qualquer ligação ao disco ótico (fig 42 a). A identificação do anel de Weiss como uma interface mais hiperreflectiva (duplo eco) no eixo visual confirma o diagnóstico (fig 42 b).

4.2. HYALOSIS ASTEROID

A presença de **aglomerados de cálcio** em suspensão no vítreo, mais ou menos condensados e extremamente móveis, condicionam um aspecto ecográfico muito típico que confirma a suspeita clínica.

- Em modo B surgem como múltiplos pontos muito brilhantes, aos quais correspondem deflexões de média/alta amplitude em modo A.
- Podem ocupar total ou parcialmente a cavidade vítrea, no entanto existe sempre um espaço pré-retiniano livre de ecos (fig 43 a-b).
- O diagnóstico é confirmado com a diminuição do ganho em que se verifica a permanência da alta refletividade correspondente ao componente cálcio (fig 43 c-d)

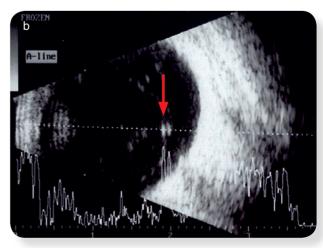
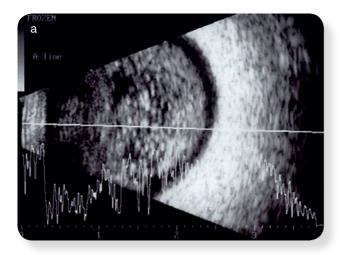
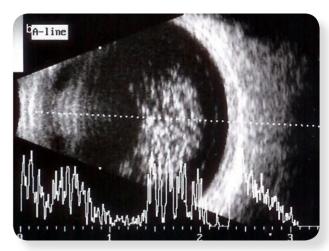
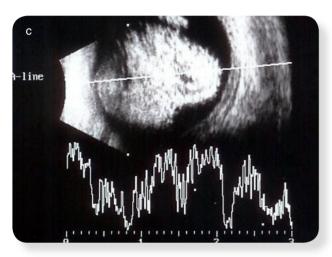





Fig 42 – Descolamento posterior do vítreo: a) hialoideia posterior visível; b) anel de Weiss visível na cavidade vítrea (seta).

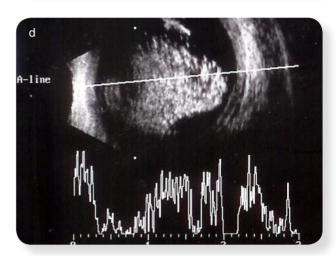


Fig 43 - Hialosis asteroid: a) envolvimento total do vítreo; b) envolvimento parcial do vítreo; c) e d) antes e após diminuição do ganho.

4.3. SYNCHISIS SCINTILANTS (COLESTEROLOSIS BULBI)

A presença de **cristais de colesterol** no vítreo ocorre em indivíduos de idade, como consequência de hemorragia vítrea ou inflamação crónica e sem associação com dislipidémia. Na presença de afaquia ou pseudofaquia verificase a migração dos cristais para a câmara anterior (fig 44 a), podendo provocar um glaucoma secundário.

- Ecograficamente identificam-se múltiplas opacidades hiperrefletivas (menos do que na HA), suspensas num vítreo liquefeito (fig 44 b).
- · No exame cinético são muito móveis mas,

na ausência de movimentos do GO tendem a depositar-se na metade inferior da cavidade vítrea.

4.4. AMILOIDOSE

A **amiloidose** é uma doença de depósito de um tipo de proteínas extracelulares – proteína amilóide, cujas fibrilhas insolúveis se podem depositar localmente ou atingir praticamente todos os orgãos e tecidos do corpo.

 A amiloidose primária ocorre de forma isolada ou associada a doenças linfoproliferativas em que são secretadas imunoglobulinas (linfoma não-Hodgkin, macroglobulinemia de Waldenstrom e mieloma múltiplo).

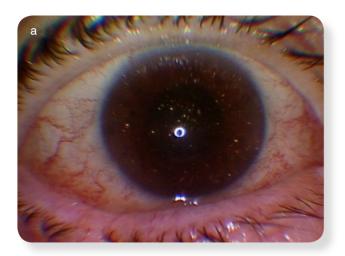


Fig 44 - Synchisis scintilants: a) cristais na CA; b) cristais no vítreo associados a descolamento de retina

- A amiloidose secundaria surge na sequência de infeções ou inflamações crónicas com produção de proteínas reativas de fase aguda no fígado (artrite reumatóide, tuberculose, psoriase artropática, doença inflamatória do intestino).
- A amiloidose hereditária (Paramiloidose PAF), de transmissão autossómica dominante, cursa com manifestações neurológicas como neuropatia periférica, pupila de Addie e também envolvimento da córnea e vítreo uni ou bilateralmente (fig 45 a-b).

Ecograficamente identificam-se múltiplas opacidade vítreas, de média/alta refletividade e de localização inicialmente posterior, móveis e sem aderência à retina (fig 45 c-d)

4.5. HEMORRAGIA DO VÍTREO

A hemorragia do vítreo (HV), qualquer que seja a sua origem impede a completa observação da retina, pelo que o estudo ecográfico, em especial a avaliação cinética, se torna imprescindível. a permanência de sangue na cavidade vítrea provoca baixa da AV por alterações químicas (hemossiderose) ou mecânicas (formação de bandas e membranas vítreas e eventual descolamento de retina).

Através do exame ecográfico é possível obter informação sobre a densidade e localização do HV, assim como excluir ou confirmar a presença de rasgaduras, tração VR, descolamento de

retina/coroideia, DMI e tumores.

 Na ecografia modo A e B a hemorragia recente apresenta-se sob a forma de múltiplos pontos brilhantes de baixa/média refletividade, móveis na cavidade vítrea e de localização e densidade variáveis (fig 46).

Aliás, só a ecografia permite obter informação segura em relação à localização da hemorragia e sua relação com a retina.

- Quando existe um DPV, o sangue pode permanecer entre a hialoideia posterior e a retina. Nesta localização o sangue mantém-se fluido e geralmente forma um nível posterior hifema posterior, facilmente identificado pelo seu limite anterior retilíneo e mobilização com a inclinação da cabeça (fig 47 a-b).
- Pelo contrário, a hemorragia pode ficar limitada ao vítreo condensado anteriormente e deixar livre a zona pré-retiniana (fig 47 c-d).
- A hialoideia posterior espessada pela presença de sangue pode emitir ecos de máxima amplitude, simulando um DR. No entanto, e ao contrário do descolamento de retina, a amplitude dos ecos diminui na periferia e habitualmente não existe aderência ao DO (fig 47 e-f).
- Na presença de um DPV incompleto com aderência ao DO e HP espessada, o diagnóstico diferencial torna-se então muito mais difícil mesmo para ecografistas experientes.

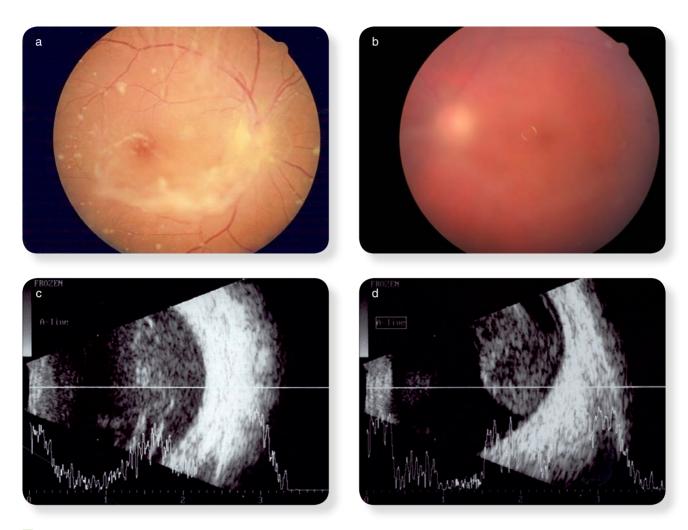


Fig 45 – Amiloidose com depósito de fibrilhas de amilóide no vítreo posterior

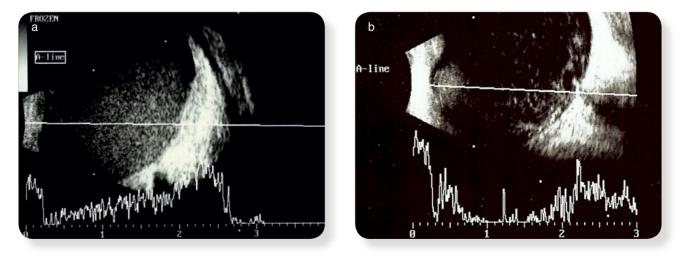
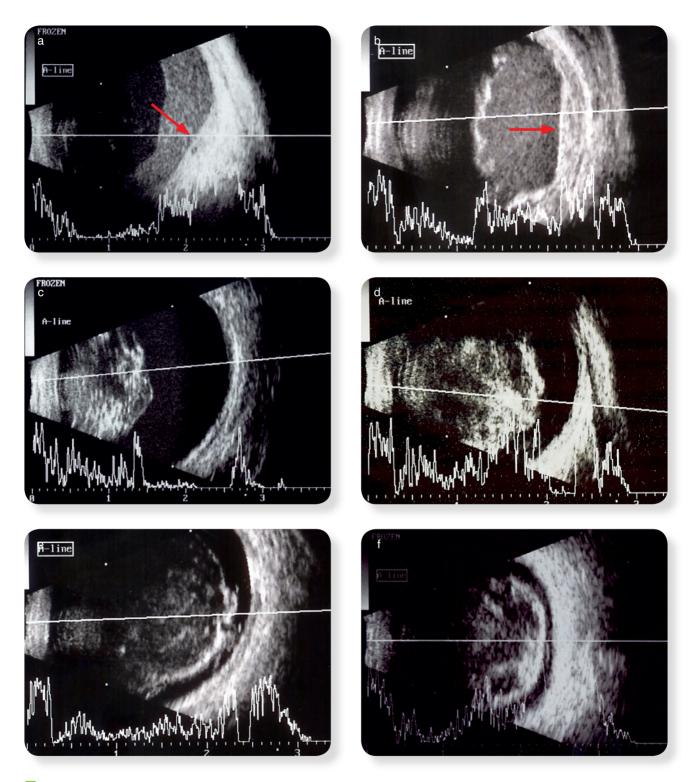
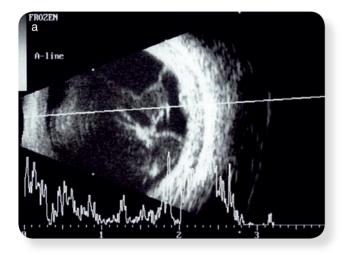
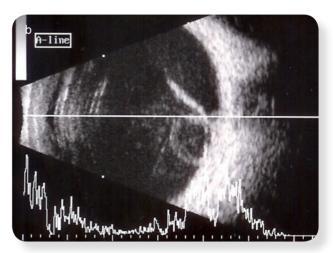
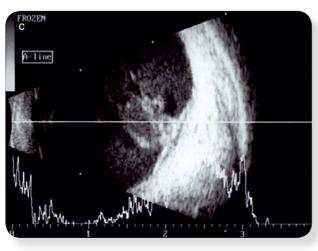



Fig 46 – Hemovítreo: a) e b) opacidades de baixa/média refletividade

■ Fig 47 – Hemovítreo e DPV: a) e b) HV localizado ao espaço sub-hialoideu e com hifema posterior (setas); c) e d) HV localizado ao vítreo que se encontra totalmente descolado e colapsado anteriormente; e) e f) HV com hialoideia posterior espessada por sangue (eco de elevada amplitude), mas sem aderência ao DO.


- Em hemorragias mais antigas, com formação de coágulos ou fibrose (organização), surgem várias interfaces sob a forma de bandas e membranas (fig 48 a-b), com mobilidade e refletividade variável de acordo com a sua densidade.
- A contração destas membranas pode tracionar a retina e provocar o seu descolamento (fig 48 c-d).


Perante uma hemorragia do vítreo cuja causa não é aparente há sempre que procurar uma rasgadura/DR, o que nem sempre é possível através da fundoscopia (fig 49).


Ao realizar a ecografia devem ser usadas as incidências longitudinais que permitem estudar os vários meridianos no sentido antero-posterior.

Por vezes, só o exame cinético torna evidente a presença de uma pequena rasgadura periférica, que na maioria das vezes se localiza aos quadrantes supero-temporal ou supero-nasal.

A descoberta de um espessamento na área macular é sugestiva de edema macular ou degenerescência macular da idade (fig 50 a-b), mas também de tumor conforme já referido anteriormente, pelo que é essencial estudar o perfil acústico destas lesões (fig 50 c-d).

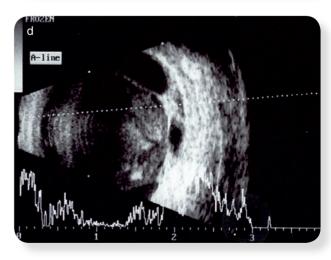
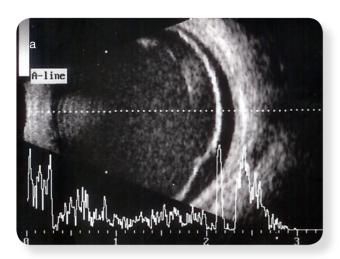



Fig 48 – HV organizado: a) e b) HV com formação de membranas posteriores; c) e d) HV com tração da retina.

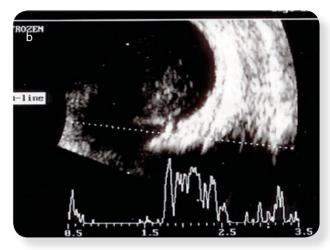
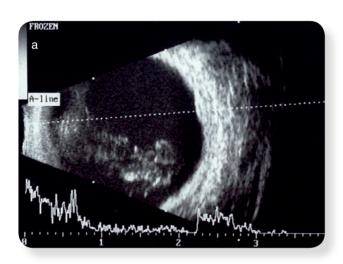
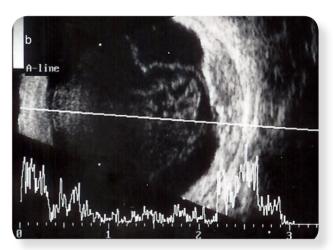




Fig 49 – Hemovítreo: a) HV com DR; b) HV com rasgadura periférica

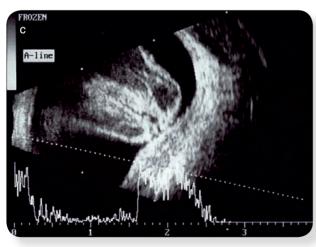


Fig 50 – Hemovítreo: a) retinopatia diabética com edema macular; b) DMI disciforme; c) hemangioma; e) melanoma (seta).

5 - RETINA


5.1. DESCOLAMENTO DE RETINA REGMATÓGENO

Em condições normais a retina aparece como uma membrana lisa, côncava, de alta refletividade e inseparável da coroideia e da esclerótica. Sempre que ocorre a separação entre a neurorretina e o epitélio pigmentado - **descolamento de retina**, essa membrana torna-se visível na cavidade vítrea.

- Apresenta uma forma plana ou ondulada, mas mantém sempre a sua aderência periférica (ora serrata) e a inserção no disco ótico (fig 51 a).
- Em modo A e sempre que a sonda se encontra perpendicular à superfície da retina o eco refletido tem amplitude máxima (100%) em comparação com a refletividade da esclerótica e gordura orbitária (fig 51 b).
- Em descolamentos recentes e sem proliferação vítreorretiniana (PVR), a retina apresenta-se fina e com movimentos ondulantes, sendo possível identificar a rasgadura na maioria dos casos (fig 52 a-b).

- Pelo contrário, nos descolamentos antigos, com grandes rasgaduras ou naqueles em que a cirurgia falhou, a proliferação vítrea ou subretiniana torna a retina espessada, quística e rígida adotando frequentemente a forma de um funil de vértice no disco ótico (fig 52 c-f).
- O espaço subretiniano preenchido por fluido é normalmente isento de ecos mas, se existir hemorragia, inflamação ou proliferação esse espaço surge com múltiplos ecos de baixa/média refletividade (colesterol, células inflamatórias ou sangue fluido, não organizado) (fig 53).

O exame ecográfico torna-se ainda mais importante quando existe a possibilidade do descolamento não ser regmatógeno, mas sim tracional ou exsudativo, secundário a inflamação ou tumor.

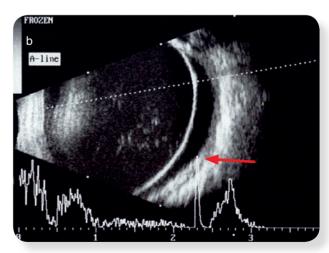


Fig 51 – Descolamento de retina: a) DR total só com aderência ao NO; b) DR plano temporal (eco de refletividade máxima)

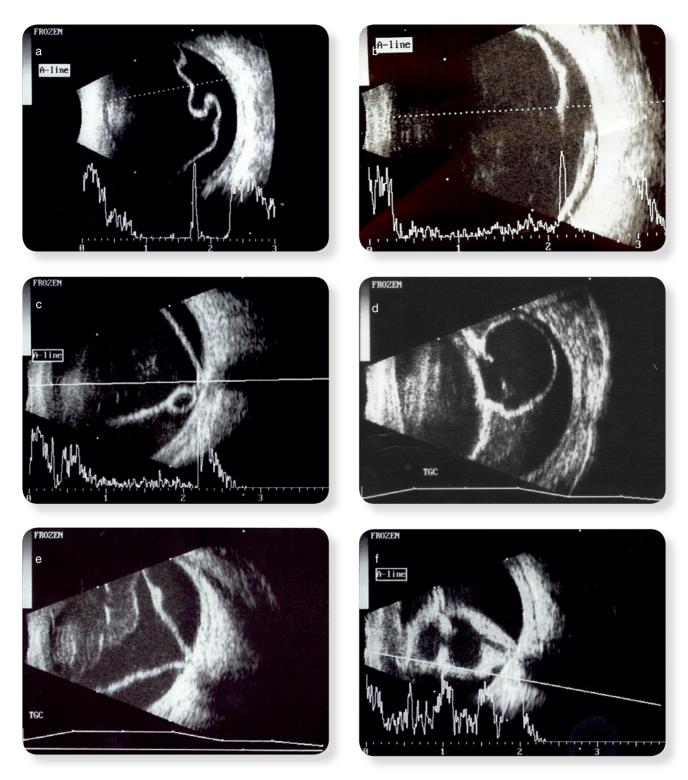
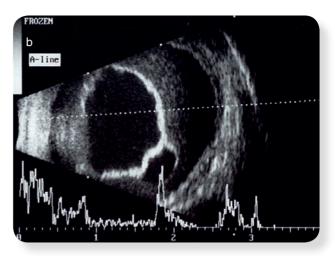


Fig 52 – Descolamento de retina: a) DR com bolsas e retina muito móvel; b) DR plano com grande rasgadura; c e d) DR total com retina quistica e rígida; e) e f) DR total com PVR em funil aberto e fechado



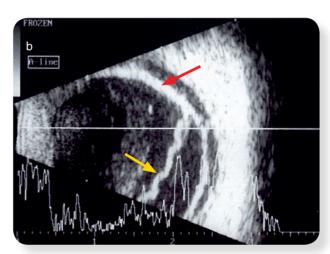
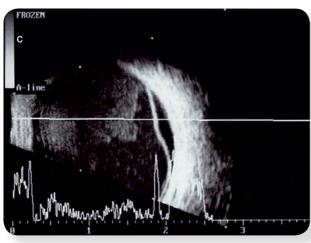



Fig 53 – Descolamento de retina com opacidades subretinianas

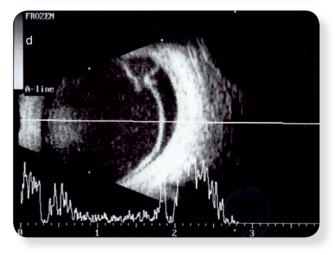


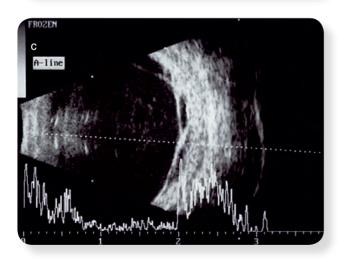
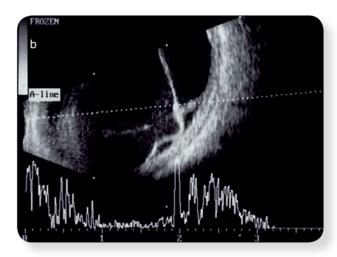
Fig 54 – Descolamento de retina exsudativo: a) DR exsudativo mais evidente inferiormente, com vitrite; b) DR exsudativo (seta amarela) com vitrite e DC (seta vermelha); c) DR exsudativo inferior com vitrite; d) DR exsudativo cilio-coroideu.

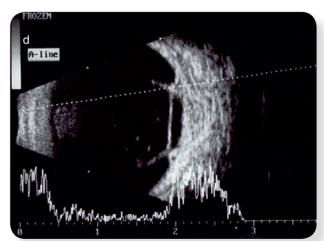
5.2. DESCOLAMENTO DE RETINA EXSUDATIVO

O descolamento exsudativo apresenta as mesmas características ecográficas anteriormente descritas, mas a sua localização varia com a posição do doente e/ou o período do dia em que a ecografia é realizada. Geralmente existem outros sinais inflamatórios associados – vitrite, descolamento de coroideia, edema do disco ótico, esclerite posterior (fig 54).

A presença de uma massa subretiniana, implica sempre a exclusão de **tumor primário ou secundário da coroideia**, pelo que é fundamental a avaliação cuidadosa da topografia e dimensões da lesão, assim como do seu perfil acústico.

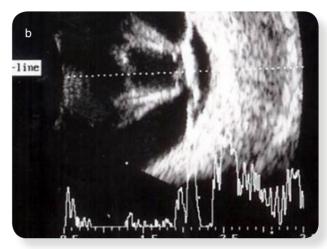
FROZEN a A-line

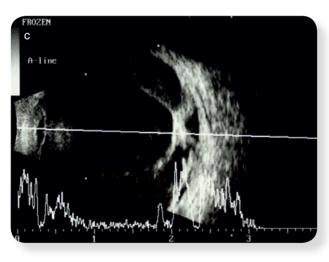




Fig 55 – Descolamento de retina tracional em tenda (X)

5.3. DESCOLAMENTO DE RETINA TRACIONAL

O descolamento tracional frequentemente associado à retinopatia diabética proliferativa localiza-se preferencialmente nas zonas de maior aderência VR - periferia, entre as arcadas temporais e peripapilar. Na ecografia as alterações adotam duas formas principais:


 Tração em tenda ou X que se traduz por pequenos levantamentos da retina em qualquer localização, em que a retina se identifica pelos ecos de elevada amplitude (fig 55) (cruzamento do x corresponde aos pontos de tração).



 Tração em planalto, geralmente entre as arcadas temporais. Neste caso a tração é mais marcada e a retina apresenta-se espessada, pouco móvel e altamente refletiva (fig 56). do GO (radiária ou circular) é possível identificar a alteração morfológica do GO, assim como as zonas dos implantes que são hiperreflectivas e condicionam atenuação dos ecos posteriores (setas vermelhas) (fig 57).



Fig 56 - Descolamento de retina tracional em planalto

5.4. AVALIAÇÃO DA RETINA APÓS CIRURGIA VÍTREORRETINIANA

A avaliação ecográfica da retina no pós-operatório da cirurgia vítreorretiniana é de extrema importância.

Podemos obter informação precoce sobre a aplicação anatómica total ou parcial da retina a nível do polo posterior e periferia e detetar a presença de hemovítreo, hemossuspensão e/ou descolamento de coroideia.

Nos olhos submetidos a cirurgia com identação

A presença de gás ou silicone intraocular interfere na aquisição das imagens e qualidade do exame. No primeiro caso a bolha de gás provoca artefactos com reduplicação dos ecos (fig 58 a), mas com o posicionamento adequado da cabeça quase sempre se consegue obter alguma informação relativamente às metades nasal e temporal.

Já no segundo caso, dada a transmissão do som no silicone ser extremamente lenta, é impossível obter uma imagem do globo ocular dentro dos limites do monitor, pelo que o exame é pouco fiável e frequentemente inconclusivo (fig 58 b).

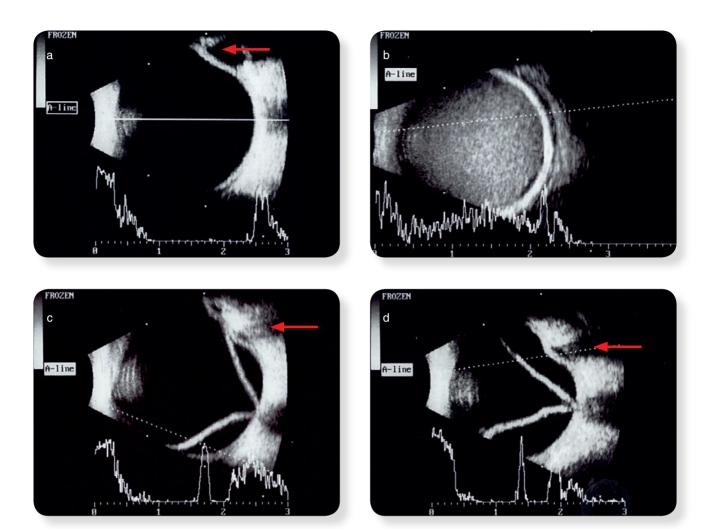
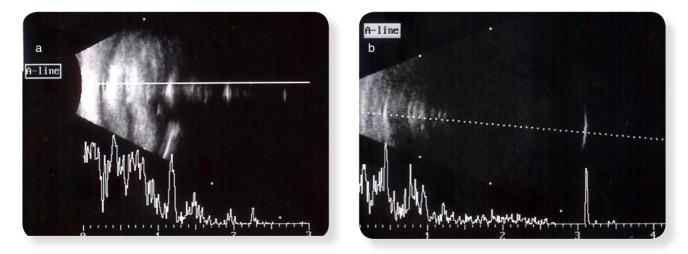



Fig 57 – Avaliação após cirurgia VR: a) retina aplicada com identação periférica (seta); b) hemossuspensão; c) DR total com aderência ao DO e à identação periférica; d) DR total apesar da identação, só com aderência ao DO.

■ Fig 58 – Avaliação após cirurgia VR: a) ecos de reduplicação por presença de gás intraocular; b) ausência de limite posterior do GO por presença de silicone intraocular.

5.5. RETINOSQUISIS

A retinosquisis caracteriza-se pela separação das camadas internas da retina neurossensorial. Esta alteração é bem evidente no OCT, quando ocorre a nível da mácula (maculopatia estrelada) como acontece na retinosquisis juvenil, com transmissão hereditária ligada ao cromossoma X (fig 59 a-b).

A retinosquisis adquirida (degenerativa associada à idade), é bilateral embora assimétrica, e localiza-se sobretudo na periferia da retina temporal inferior.

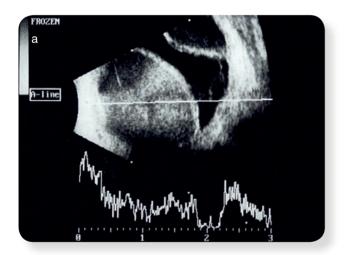
- Na retinosquisis típica a separação ocorre a nível da camada plexiforme externa, é mais periférica não atingindo o polo posterior e não apresenta risco de evolução para DR (fig 59 c-d).
- Na retinosquisis reticular (bolhosa) a separação dá-se a nível da camada de fibras nervosas, é mais posterior e devido à existência de buracos a nível dos folhetos interno e externo da cavidade quística apresenta maior risco de evolução para DR (fig 59 e-f).

Em modo A e B identifica-se uma membrana regular, delgada, de forma convexa e alta refletividade. As dimensões são variáveis (mais plana ou mais bolhosa), não apresenta mobilidade e o espaço posterior é isento de ecos (fig 59)

Fig 59 – Retinosquisis: a) e b) retinosquisis juvenil; c) e d) retinosquisis adquirida típica; e) e f) retinosquisis adquirida reticular (bolhosa).

Atlas de Ecografia Oftálmica Vol I - Ecografia do Segmento Posterior

6 - COROIDEIA


6 - COROIDEIA

6.1. DESCOLAMENTO DA COROIDEIA

O descolamento da coroideia (DC) pode ocorrer em situações de hipotonia, mais frequentemente associado a inflamação, traumatismo ou cirurgia de glaucoma.

- Localiza-se a um ou mais quadrantes, anteriormente estende-se até à ora serrata e posteriormente é limitado pela ampola das veias vorticosas, nunca atingindo o NO. Esta característica é fundamental para o diagnóstico diferencial com DR (fig 60).
- Na ecografia identifica-se uma membrana espessa em forma de cúpula, pouco móvel, de elevada refletividade e que tipicamente surge com um pico bifurcado em modo A (fig 61 a).

- O espaço supracoroideu é isento de ecos no DC exsudativo (fig 61 a-b), mas no DC hemorrágico e de acordo com o grau, densidade e tempo de evolução da hemorragia, identificam-se ecos de baixa/média refletividade (fig 61 c).
- Em casos extremos e quase sempre associados a traumatismo grave, sobretudo em olhos afáquicos ou pseudofáquicos, a extensão do DC é tal que pode ocupar toda a cavidade vítrea kissing choroidals (fig 61 d).
- As áreas de hemólise assemelham-se a quistos hiporrefletivos (seta) em comparação com o sangue envolvente e a sua deteção constitui um bom indicador para a realização de drenagem (fig 62).

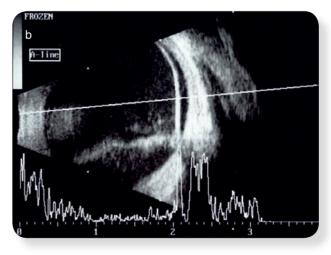


Fig 60 - Diagnóstico diferencial ecográfico: a) DC sem atingir o NO;b) DR com inserção no DO

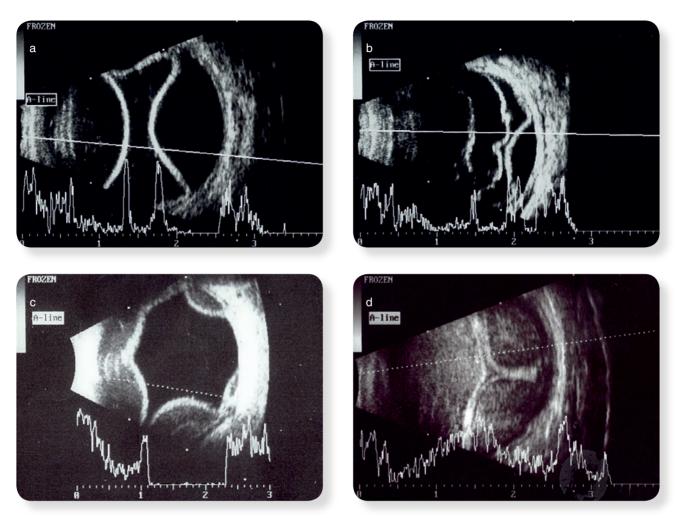
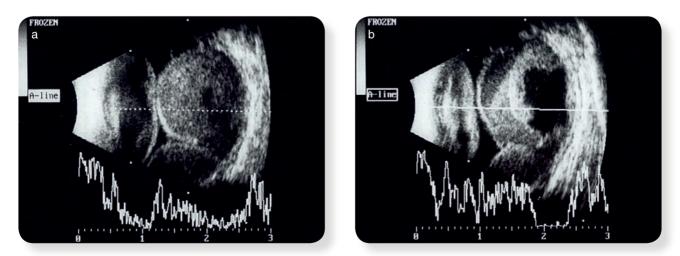
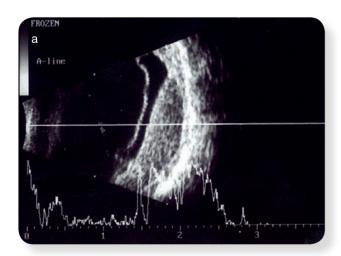


Fig 61 – Descolamento da coroideia: a) DC exsudativo; b) DC exsudativo com DR; c) DC hemorrágico; d) kissing choroidals.




Fig 62 – Descolamento de coroideia com áreas de hemólise em b) (seta).

6.2. ESPESSAMENTO DA COROIDEIA

O **espessamento da coroideia** surge quase sempre associado a traumatismo ou doença sistémica com ou sem hipotonia.

- Na doença de Vogt Koyanaghi Harada, hiperplasia linfóide, oftalmia simpática ou linfoma, a infiltração da coroideia provoca ecos de baixa/média amplitude (fig 63 a).
- Nos casos de efusão uveal, sarcoidose e phthisis, os ecos tem amplitude mais elevada (fig 63 b).

A maioria das situações evolui favoravelmente, mas a realização de exames seriados é importante para monitorizar a resposta ao tratamento e detetar uma possível evolução para atrofia do globo ocular (fig 63 b).

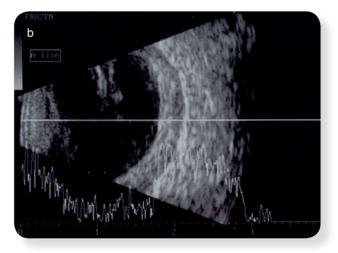


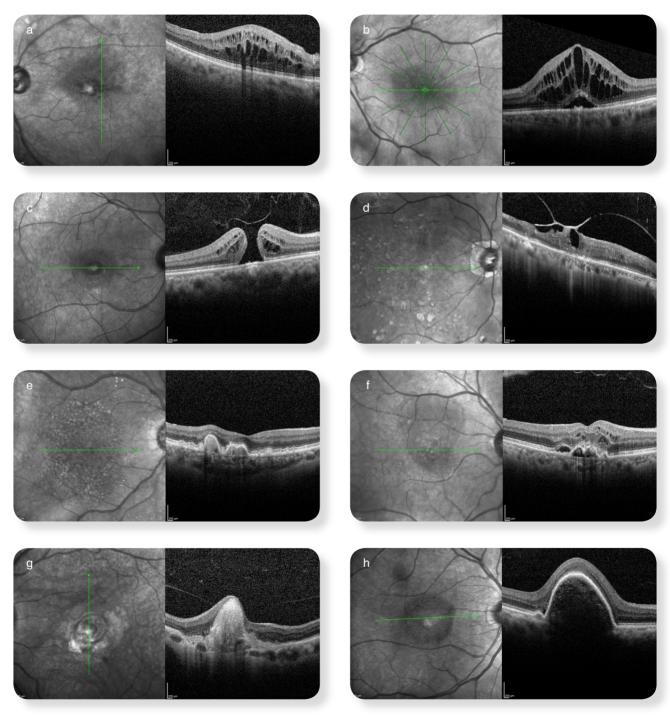
Fig 63 – Espessamento da coroideia: a) infiltração da coroideia por linfoma com DR; b) espessamento difuso associado a evolução de panuveite para phthisis bulbi.

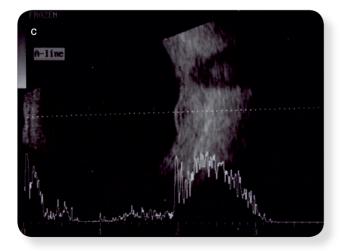
7 - MÁCULA

7 - MÁCULA

O exame estrutural de eleição para o estudo da patologia da mácula é a tomografia de coerência ótica (OCT), pois fornece imagens de alta resolução da microestrutura da neurorretina e complexo epitélio pigmentado/membrana de Bruch/coriocapilar (fig 64).

No entanto, na ausência de OCT ou na impossibilidade de obter imagens fiáveis o exame ecográfico é definitivamente uma mais-valia.

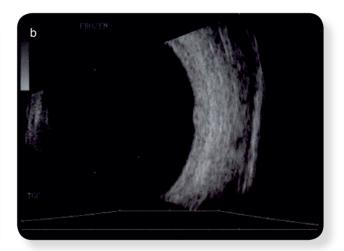



Fig 64 – OCT na patologia da mácula: a) edema intra e subretiniano; b) edema macular cistóide com descolamento da fóvea; c) buraco macular de espessura total (grau 4); d) síndrome de tração VR; e) DMI com drusen moles (DEP drusenoide); f) DMI com membrana neovascular coroideia ativa; g) DMI disciforme; h) descolamento do epitélio pigmentado (DEP).

É o caso da avaliação pré-operatória de doentes com cataratas densas ou queratopatias, sobretudo quando a história prévia é desconhecida. Assim, a área macular deve ser sempre examinada, recorrendo à técnica apropriada referida na introdução e que exige alguma experiência.

- Incidência axial horizontal com sonda axial (marca voltada para o nariz) – a mácula situa-se na parte inferior do ecograma.
- Incidência longitudinal com sonda dirigida para as 9H no OD e 3H no OE (marca voltada para o centro da córnea) – a mácula situa-se na parte central do ecograma.

Desse modo, torna-se possível identificar algumas lesões maculares importantes, nomeadamente o edema macular, o síndrome de tração vítreomacular, o buraco macular, a DMI e a hemorragia pré-macular.


A-line

7.1. EDEMA MACULAR e DESCOLAMENTO SEROSO DA MÁCULA

O edema macular (EM) caracteriza-se pela presença de fluido intrarretiniano e o descolamento seroso (DS) pela presença de fluido subretiniano entre o epitélio pigmentado e a neurorretina. As principais causas são a retinopatia diabética, a oclusão venosa, a uveíte, a DMI e a cirurgia de catarata complicada.

- Em qualquer destas lesões observa-se em modo B, um espessamento em forma de cúpula na área macular, em geral de reduzidas dimensões (fig 65 a).
- No edema macular cistóide identifica-se um pequeno espaço quistico hiporrefletivo no seu interior (fig 65b) que se torna bem mais evidente no descolamento seroso (fig 65 c-d).

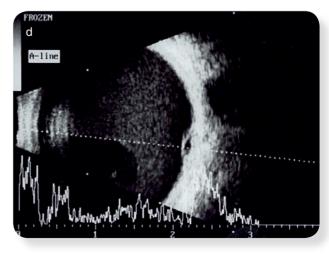
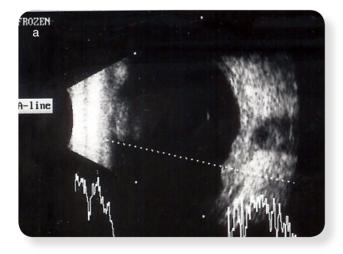


Fig. 65 – Edema macular: a) e b) edema macular quistico; c) e d) descolamento seroso da mácula

7.2. DEGENERESCÊNCIA MACULAR DA IDADE (DMI)

A **DMI** é uma doença degenerativa relacionada com a idade que envolve primariamente a coriocapilar (CC), membrana de Bruch e epitélio pigmentado da retina (EPR) na área macular.


A maculopatia da idade é considerada um precursor da DMI e caracteriza-se pela presença de alterações da pigmentação do EPR, drusen (duros, moles, calcificados) e descolamento do EPR drusenoide.

A evolução faz-se para a forma **atrófica** ou **exsudativa** de DMI. Só esta forma pode ser identificada na ecografia, pois a formação de uma membrana neovascular coroideia (MNC) com edema ou hemorragia subretiniana ou subepitelio pigmentado provoca sempre um espessamento macular, geralmente de superfície irregular, hiperrefletivo e de dimensões variáveis (fig 66).

No entanto, as suas características ecográficas variam de acordo com a forma clínica e o grau de exsudação ou hemorragia:

 No descolamento do epitélio pigmentado (DEP), o espessamento é em forma de cúpula e com refletividade interna baixa ("bolha") (fig 67 a-b). A extensão é maior no DEP hemorrágico que está frequentemente associado a hemovítreo (fig 67 c-d).

 A vasculopatia polipóide corresponde a uma variante da MNVC tipo 1 e manifestase por descolamentos da neurorretina e do EPR serosos e/ou serohemorrágicos de grandes dimensões, aspeto lobulado e com refletividade interna elevada (fig 68).

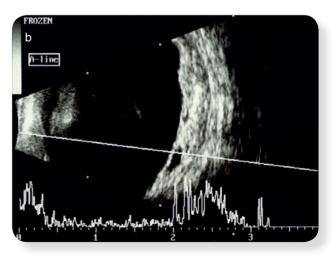


Fig 66 – DMI: a) espessamento macular bosselado de alta refletividade; b) espessamento da área macular e extramacular de alta refletividade associado a descolamento seroso

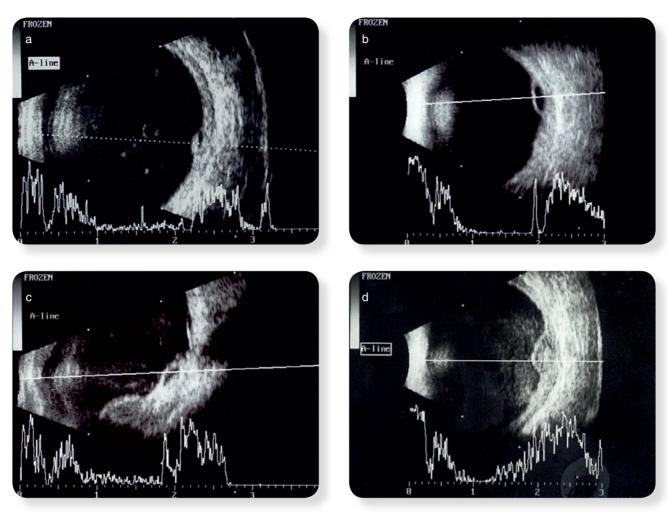


Fig 67 – DMI: a) e b) DEP seroso; c) e d) DEP hemorrágico associado a HV

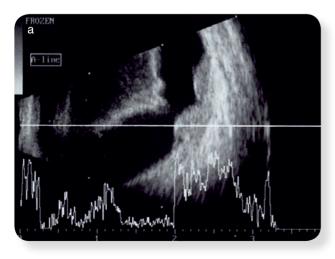
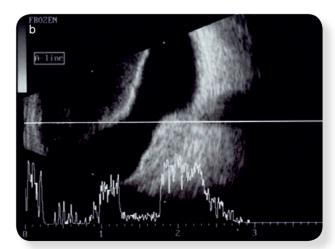



Fig 68 – DMI: vasculopatia polipóide com hemovítreo

 Na cicatriz disciforme, devido à proliferação fibrovascular, a morfologia é nodular e irregular, a refletividade é média/alta e a estrutura interna é heterogénea (fig 69 a). Envolve geralmente todo o polo posterior, podendo mesmo estender-se para o lado nasal.

O diagnóstico diferencial deve ser feito com nevus, hemangioma e metástases da coroideia. Todavia, a identificação de ecos de amplitude máxima e cone de sombra posterior é indicativo de zonas mais densas de fibrose ou cálcio, típicas desta forma de DMI (fig 69 b).

7.3. INTERFACE VÍTREO-RETINA

A patologia da interface vítreo-retina compreende o DPV (já descrito em capitulo anterior), o síndrome de tração vítreomacular, a membrana epirretiniana macular e o buraco macular.

O síndrome de tração vítreomacular consiste na alteração macular induzida por um DPV incompleto com aderência da hialoideia posterior à mácula, o que condiciona alterações quísticas intrarretinianas com aumento da espessura da mácula.

A ecografia cinética põe em evidência este conjunto de forças tracionais e identifica os pontos de contacto vítreomaculares que apresentam refletividade máxima (fig 70).

- A membrana epirretiniana macular (MER) corresponde a fibrose pré-macular, consequência de proliferação de células gliais, intimamente aderentes à membrana limitante interna. A ecografia deteta o edema macular na ausência de tração VR.
- O buraco macular (BM) é causa de disfunção visual grave e a maioria dos casos tem por base uma tração vítreomacular. O OCT possibilita estadiar e classificar o BM, mas a ecografia tem o privilégio de estudar a cinética do vítreo em toda a sua extensão e a relação deste com a mácula, DO e periferia.

O BM surge como um espessamento da mácula centrado por uma depressão e associado a um DPV (fig 71), total no grau 4 (identifica-se o anel de Weiss), ou ainda aderente à fóvea no grau 3.

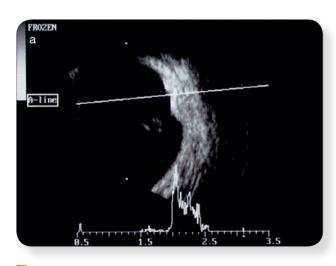
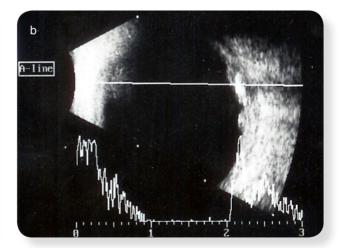
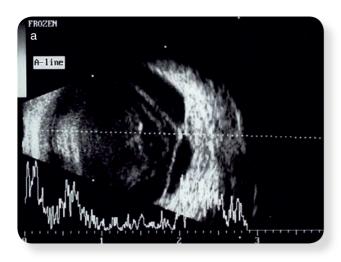




Fig 69 – DMI: cicatriz disciforme

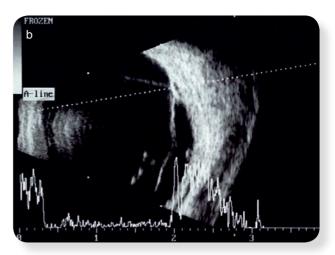


Fig 70 – Tração vítreomacular

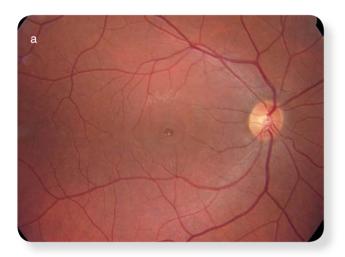
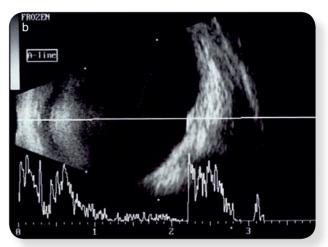
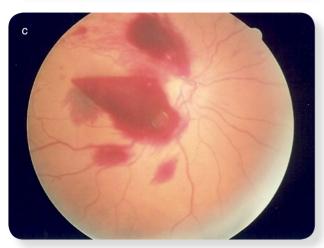


Fig 71 – Buraco macular grau 4

7.4. HEMORRAGIA PRÉ-MACULAR


A hemorragia pré-macular (entre a hialoideia posterior e a limitante interna ou entre esta e a retina) faz parte do quadro clínico e pode mesmo ser o primeiro sinal de algumas doenças sistémicas como a retinopatia hipertensiva, síndromes linfoproliferativos e discrasias hemorrágicas.


- A localização, extensão e densidade são variáveis e dependem da existência prévia de DPV.
- Na ecografia identifica-se uma membrana/massa justarretiniana hiperreflectiva, de

espessura variável, limitada anteriormente pela hialoideia posterior que pode não ser visível (fig 72 a-b). Quando esta está descolada o sangue tende a formar um nível posterior (fig 72 c-d).

No **síndrome de Terson**, consequência de hemorragia subaracnoideia, subdural ou intracerebral, a hemorragia macular é geralmente bilateral e pode ocorrer isolada ou com extensão para o vítreo (fig 73).

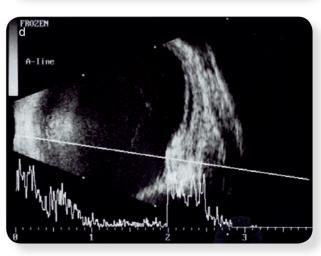
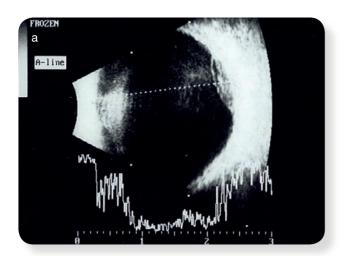



Fig 72 – Hemorragia pré-macular em doentes anticoagulados por patologia cardiovascular.

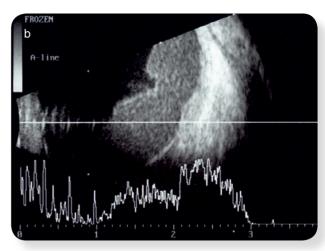


Fig 73 – Síndrome de Terson: a) hemorragia pré-macular e HV pouco denso; b) hemorragia pré-macular e HV denso localizado entre a hialoideia posterior descolada e a retina.

Atlas de Ecografia Oftálmica Vol I - Ecografia do Segmento Posterior

8 -INFLAMAÇÃO OCULAR

A inflamação ocular independentemente da sua etiologia, acompanha-se frequentemente de hipotransparência dos meios – opacidades na córnea, na câmara anterior, no vítreo, catarata, que dificultam a observação do fundo ocular. Portanto, a ecografia impõe-se mais uma vez como método de estudo imagiológico de primeira linha.

8.1. ESCLERITE POSTERIOR

A **esclerite posterior** afeta o segmento posterior de uma forma difusa ou nodular e muitas vezes não é possível identificar a sua etiologia. Alguns casos estão associados a doença sistémica sobretudo vasculites. Outros, estão associados a inflamação intraocular (panuveíte), ou orbitária (celulite, tumor, pseudotumor, oftalmopatia tiroideia).

Provoca numa fase inicial espessamento da esclerótica e acompanha-se de dor, sinais inflamatórios e limitação da motilidade ocular. O diagnóstico clínico nas formas anteriores é geralmente evidente, mas nas esclerites posteriores a informação obtida com o exame ecográfico é extremamente valiosa.

A fundoscopia pode revelar a presença de DR seroso, edema do disco ótico, pregas da coroideia (fig 74), pelo que se torna necessário excluir sempre a presença de tumor intra ou extraocular

 Na esclerite posterior difusa o achado ecográfico mais importante é o espessamento difuso da parede ocular acompanhado de aumento do espaço subtenoniano (espaço virtual que em condições normais não é identificável).

Assume a forma de uma linha espessa hiporreflectiva que divide a parede ocular da gordura orbitária (fig 75 a-b). Quando envolve a região peripapilar obtém-se uma imagem ecográfica muito típica – **sinal do T** (fig 75 c-d). Podem ainda identificar-se descolamento da coroideia e/ou retina.

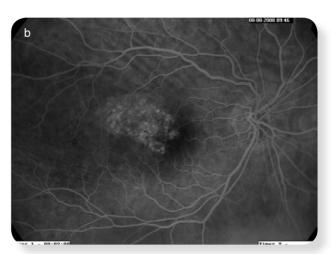


Fig 74 – Esclerite posterior: a) edema do disco ótico; b) pregas da coroideia

Fig 75 – Esclerite posterior difusa: a) e b) aumento do espaço subtenoniano; c) e d) sinal do T

A esclerite posterior nodular pode apresentar-se como uma massa elevada na cavidade vítrea a nível do polo posterior, com refletividade interna alta e estrutura homogénea, simulando um hemangioma ou carcinoma metastático (fig.76 a-b).

No entanto, a monitorização por ecografia possibilita objetivar a boa resposta ao tratamento com anti-inflamatórios e assim excluir um tumor (fig 76 c-d).

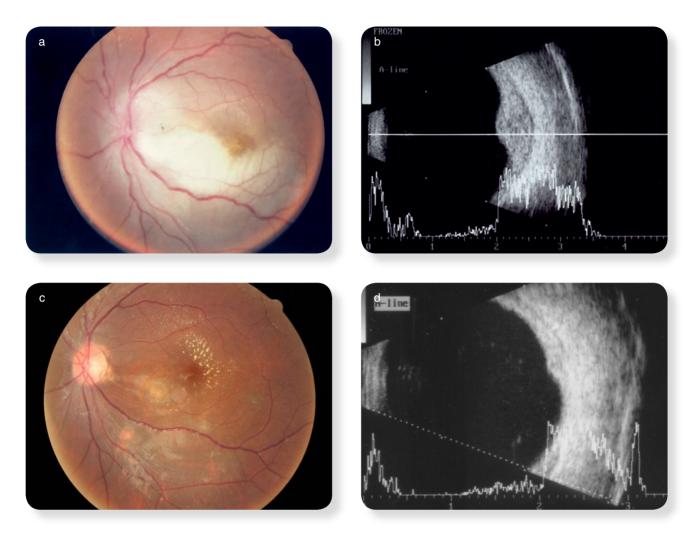


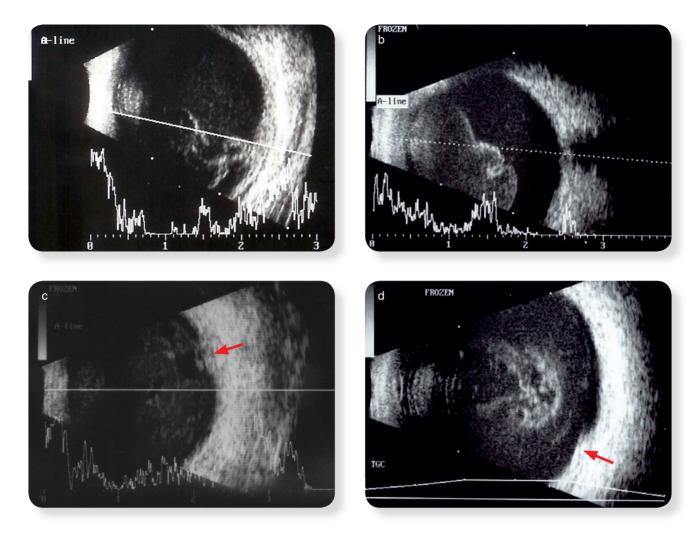
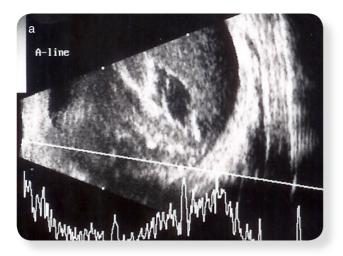
Fig 76 – Esclerite posterior nodular: a) e b) antes do tratamento; c) e d) após o tratamento

8.2. ENDOFTALMITE

A endoftalmite infecciosa constitui uma potencial causa de cegueira, pelo que o diagnóstico precoce e tratamento adequado são mandatórios. O exame ecográfico permite avaliar rapidamente a gravidade e extensão da infeção assim como detetar alterações associadas:

Opacidades de baixa refletividade localizadas ou dispersas na cavidade vítrea são um achado comum nestas situações (fig 77 a). Quando existe um DPV, a presença de opacidades no espaço sub-hialoideu é sinal de atividade (fig 77 b). Também a presença de um espessamento da área macular é sinal de edema macular (fig 77 c-d).

Sem tratamento atempado evolui para formas complicadas com formação de **bandas/membranas vítreas, tração VR** (fig 78 a-b) e **descolamento de retina ou coroideia** (fig 78 c-d), cujas características ecográficas já foram descritas em capítulos anteriores.

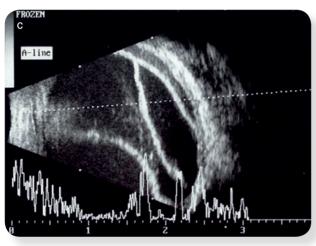


Fig 77 – Endoftalmite: a) opacidades vítreas e bandas posteriores; b) Opacidades vitreas e DPV; c) e d) opacidades vítreas e espessamento macular (setas).

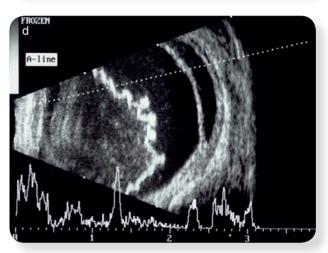
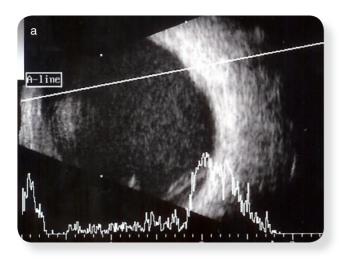


Fig 78 – Endoftalmite complicada: a) membranas posteriores; b) membranas e DC; c) e d) DC e DR

8.3. VITRITE


A vitrite associada à uveíte posterior de causa endógena ou exógena apresenta características ecográficas semelhantes às da endoftalmite.

- Opacidades vítreas de baixa refletividade, mas com menor formação de membranas.
- O edema macular que acompanha frequentemente o processo inflamatório (fig 79 a) pode permanecer após a resolução da uveíte, pelo que deve ser sempre pesquisado em todos os exames de controlo (fig 79 b).

Algumas infeções como a toxoplasmose provocam além da vitrite, uma **retinocoroidite focal.**

 Espessamento da parede ocular, mais facilmente identificado se diminuirmos o ganho e eliminarmos a refletividade do vítreo (fig 80). Na cirurgia de catarata, complicada com rotura de cápsula posterior, a ecografia demonstra a presença de vitrite, localiza os fragmentos de cristalino luxados na cavidade vítrea e exclui ou confirma a presença de tração VR ou DR.

 Os fragmentos de cristalino surgem como massas hiperreflectivas de dimensões e localização variáveis (fig 81 a). Quando existe um DPV, situam-se junto à hialoideia posterior e acompanham os seus movimentos (fig 81 b).

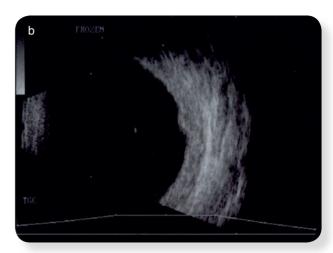
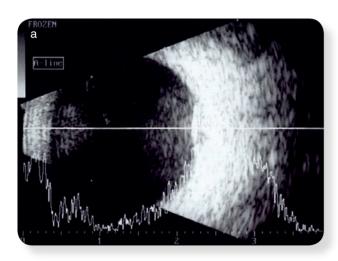



Fig 79 – Edema macular: a) associado a vitrite; b) após a resolução da vitrite

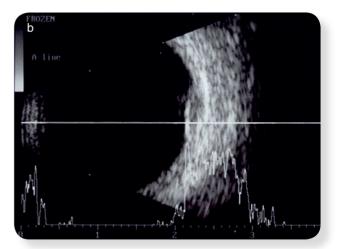
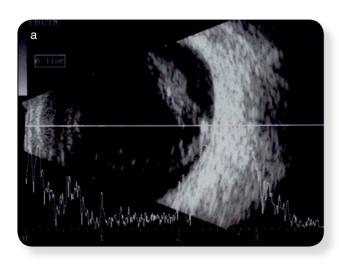
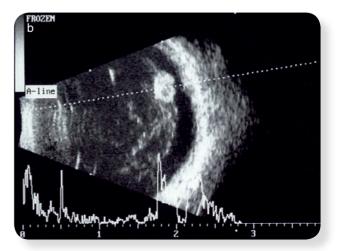
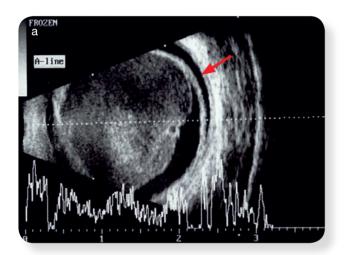
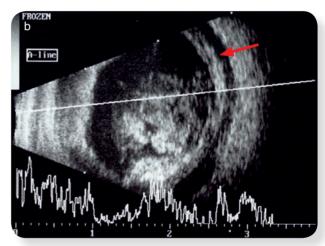



Fig 80 – Vitrite e retinocoroidite: a) antes; b) após diminuição do ganho


Fig 81 – Fragmentos de cristalino luxados na cavidade vítrea

8.4. PANUVEÍTE

A **panuveíte** caracteriza-se pelo envolvimento do segmento anterior e posterior do globo ocular e da órbita anterior. As principais causas são a sífilis, toxoplasmose, tuberculose, sarcoidose, doença de Behcet, síndrome de VKH e oftalmia simpática.

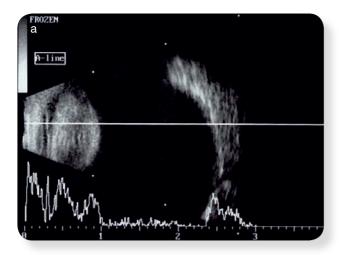
Na ecografia identificam-se várias alterações como opacificação do vítreo, DR exsudativo, espessamento ou descolamento da coroideia, edema do disco ótico e esclerite posterior com aumento do espaço subtenoniano (fig 82).

■ Fig 82 – Panuveíte: a) opacidades vítreas, DPV e DC (seta); b) opacidades vítreas e aumento do espaço subtenoniano (seta).

9 -TRAUMATOLOGIA OCULAR

9-TRAUMATOLOGIA OCULAR

O traumatismo ocular é uma importante causa de disfunção visual, pelo que a avaliação adequada do doente é fundamental, não só para o correto diagnóstico mas também para o planeamento da estratégia terapêutica. No entanto, a avaliação oftalmológica (história clínica, exame objetivo) é frequentemente dificultada pelo estado geral do doente. O estudo ecográfico é nestas situações um exame de primeira linha, que oferece algumas vantagens em relação a outros exames imagiológicos em especial a possibilidade de poder ser realizado precocemente e à cabeceira do doente.


De uma forma geral os traumatismos dividemse em contusos, penetrantes e corpos estranhos – intraoculares ou intraorbitários.

9.1. TRAUMATISMOS CONTUSOS

Em relação aos traumatismos contusos, a ecografia possibilita a identificação e localização de várias alterações:

- Na catarata traumática o cristalino opacificado e intumescente é facilmente detetado pela sua forma biconvexa de espessura e refletividade aumentadas (fig 83).
- Na subluxação ou luxação do cristalino, é possível localizar o cristalino e analisar a sua relação com as estruturas vizinhas durante e após o movimento dos olhos, assim como detetar a presença de hemovítreo ou descolamento da retina.

O cristalino apresenta-se como uma massa de forma biconvexa, eco anterior e posterior de amplitude elevadas, refletividade interna variável de acordo com o grau de opacificação e que condiciona apagamento dos ecos posteriores (fig 84).

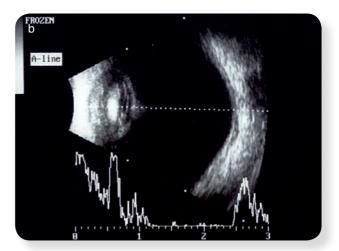
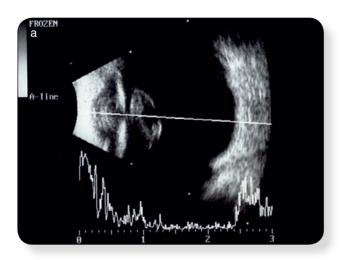



Fig 83 – Traumatismo contuso: a) cristalino opacificado e intumescente; b) cristalino opacificado com corpo estranho no seu interior

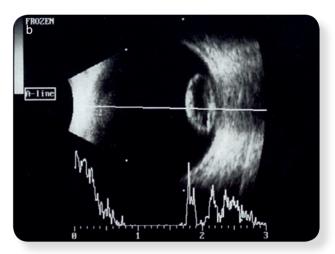


Fig 84 – Traumatismo contuso: a) subluxação do cristalino; b) luxação posterior do cristalino

- O hematoma da órbita pode ocorrer como uma lesão única ou multiloculada, apresenta limites bem definidos e refletividade interna baixa (fig 85a-b). Ecograficamente é difícil de distinguir do abcesso da órbita, mas a história clínica de celulite/sinusopatia, a presença de outras alterações como miosite ou esclerite posterior (fig 85 c-d) e a evolução clínica são muito importantes para o diagnóstico diferencial a favor da infeção.
- Na presença de hematoma subconjuntival exuberante e hipertensão ocular, sobretudo em doentes anticoagulados, deve ser realizada ecografia (ou outro exame de imagem) para exclusão de hematoma

retrobulbar que pode estar confinado ao espaço subtenoniano. Observa-se então um alargamento desse espaço, com ecos de média amplitude (maior do que na esclerite posterior)(fig 85 e-f)

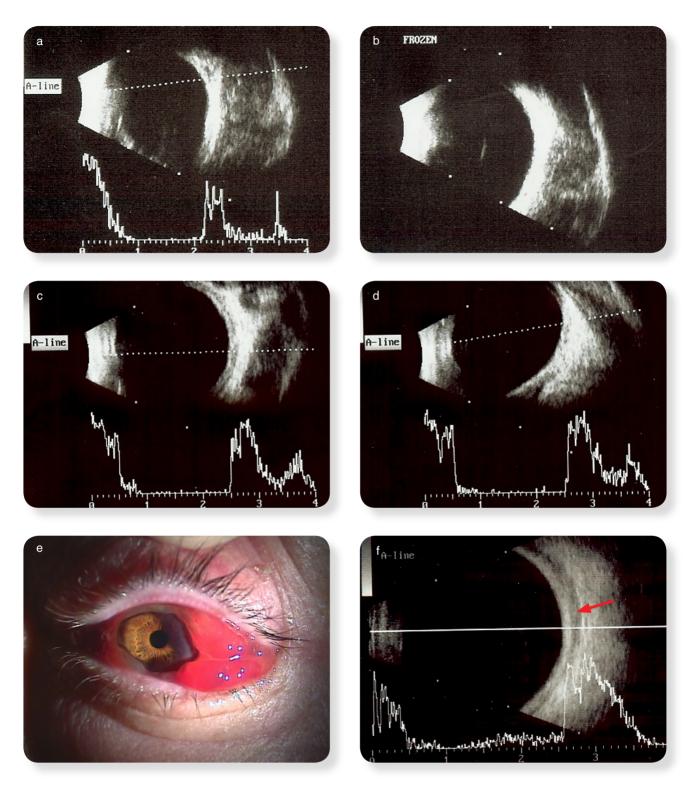


Fig 85 – Traumatismo contuso: a) e b) hematoma da órbita; c) e d) abcessos da órbita (seta amarela) por pansinusite com aumento da espessura do musculo reto interno-miosite (seta vermelha); e) e f) hematoma subconjuntival e subtenoniano (seta).

9.2. TRAUMATISMOS PENETRANTES

Em relação aos traumatismos penetrantes a ecografia só deve ser realizada após a sutura de todas as feridas identificadas do globo ocular. Assim, tem sobretudo um papel importante no seguimento dos doentes após a cirurgia de urgência, na avaliação de:

- Trajetos hemorrágicos na cavidade vítrea, que se podem apresentar como uma fina membrana hiperreflectiva, antero-posterior com origem na ferida, sem lesão da retina (fig 86 a), ou hemorragias mais densas que terminam e identificam uma rotura posterior com encarceramento do vítreo (fig 86 b).
- Grandes traumatismos quase sempre provocam desorganização do segmento anterior e posterior com hemovítreo, luxação do cristalino, descolamento de retina e/ou coroideia (fig 87). A importância da ecografia nestes casos, advém do facto de ser o único método fiável, não invasivo e económico, capaz de avaliar rapidamente a gravidadedas lesões e ajudar a decidir sobre a necessidade de outros procedimentos cirúrgicos.

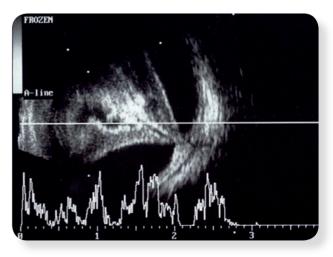
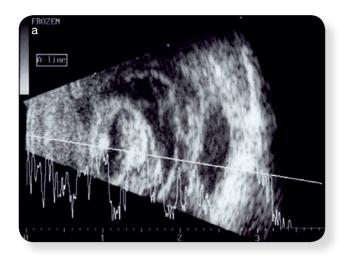
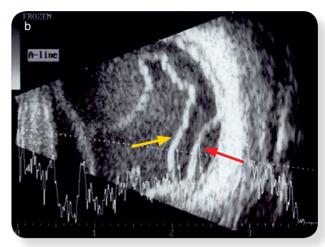
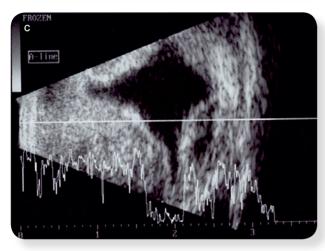
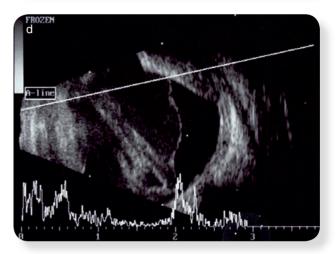






Fig 86 – Traumatismos penetrantes: a) com trajecto hemorrágico; b) com rotura posterior e encarceramento do vítreo.

■ Fig 87 – Traumatismos penetrantes: a) luxação do cristalino e HV; b) HV, descolamento de retina (seta amarela) e de coroideia (seta vermelha); c) descolamento de coroideia hemorrágico nos 360º; d) DC e trajeto hemorrágico

9.3. CORPO ESTRANHO INTRAOCULAR

Em relação aos **corpos estranhos (CE)** metálicos, a ecografia apresenta uma grande sensibilidade, sobretudo no que diz respeito à sua localização intra ou extraocular e sua relação com outras estruturas, o que nem sempre é possível de avaliar através da TAC devido à presença de artefactos.

A pesquisa de CE exige paciência e deve ser realizada recorrendo a várias incidências, de forma a estudar o cristalino, o vítreo, a parede ocular e a órbita.

 Os CE metálicos apresentam-se como uma interface de alta refletividade, o que provoca grande atenuação do som e apagamento dos ecos posteriores (fig 88 a). Nalguns casos é também possível identificar um trajeto intravítreo hemorrágico (fig 88 b) ou mesmo uma rotura posterior do globo ocular correspondente à porta de saída.

- Os CE esféricos (chumbo) demonstram características específicas, pois devido à sua esfericidade provocam a reduplicação dos ecos ("cauda de cometa") (fig 88 c).
- Os CE de vidro só se identificam bem se o ultrassom incidir perpendicularmente sobre eles, pelo que devem ser pesquisados minuciosamente. Aparecem como uma membrana fina, hiperreflectiva com cone de sombra posterior (fig 88 d).

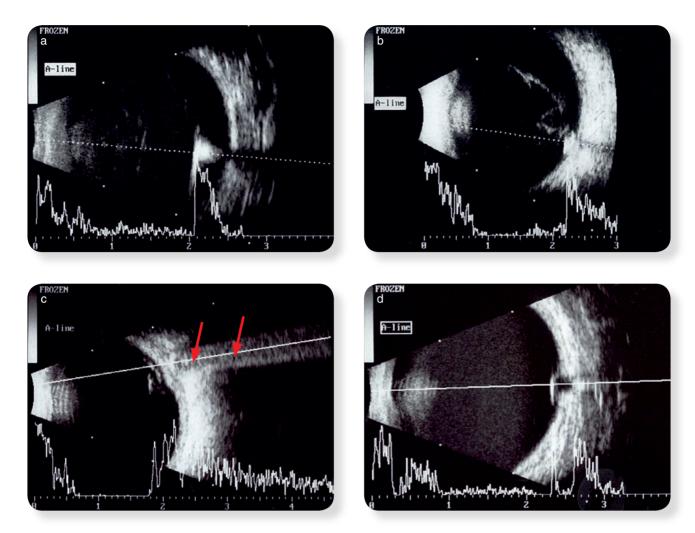


Fig 88 – Corpos estranhos intraoculares: a) CE metálico no vítreo; b) CE justarretiniano; c) CE (chumbo) na parede ocular a condicionar ecos de reverberação (seta); d) CE de vidro justarretiniano

Atlas de Ecografia Oftálmica Vol I - Ecografia do Segmento Posterior

10 – ÓRBITA E NERVO ÓTICO

10 - ÓRBITA E NERVO ÓTICO

A avaliação ecográfica não fica completa sem o estudo da ecogenicidade das várias estruturas presentes na órbita:

- Tecidos moles que incluem gordura, vasos, nervos e septos fibrosos e são responsáveis pelo padrão de alta refletividade presente atrás do GO.
- Músculos oculomotores, cujas fibras musculares apresentam uma estrutura interna muito homogénea, regular e de baixa refletividade. Assim, o contraste com a gordura orbitária e a cápsula de Tenon que são muito refletivas, facilita a análise da sua morfologia e dimensões. A alteração mais frequentemente encontrada é o espessamento muscular.
- A porção intraorbitária do nervo ótico é uma estrutura homogénea, tubular, em forma de S, hiporrefletiva em relação à gordura orbitária envolvente. Usando a técnica adequada, a ecografia ajuda a distinguir anomalias do NO associadas a malformação, inflamação, infeção, tumor ou traumatismo.

10.1. TUMORES E OUTRAS LESÕES DA ÓRBITA

De uma forma geral as lesões sólidas ou quísticas que afetam a porção anterior da órbita e nervo ótico estão frequentemente associadas a proptose unilateral e alterações secundárias como distorsão da gordura orbitária, MOM e NO, edema, aplanamento do polo posterior e pregas da coroideia (fig 89 a-b-c). Apesar de algumas destas lesões apresentarem características ecográficas específicas, a maioria das vezes é necessário recorrer a outras técnicas imagiológicas que permitam a avaliação de toda a cavidade orbitária, seios perinasais e via ótica (fig 89 d).

O exame ecográfico possibilita a avaliação da **morfologia** e **perfil acústico** dessas lesões:

 Lesões redondas bem delimitadas e com boa transmissão do som correspondem geralmente a lesões quísticas – mucocelo, hemangioma cavernoso, quisto dermóide, adenoma da glândula lacrimal.

- Lesões redondas bem delimitadas e com má transmissão do som correspondem geralmente a tumores sólidos – meningioma, glioma, neurofibroma, adenocarcinoma da glândula lacrimal, rabdomiossarcoma.
- Lesões difusas e com boa transmissão do som correspondem geralmente a tumores angiomatosos – hemangioma capilar, linfangioma.
- Lesões difusas e com má transmissão do som correspondem geralmente a tumores infiltrativos – linfoma, mestástases, pseudotumor.

10.1.1.TUMORES NEUROGÉNICOS

O **glioma** é um tumor derivado da glia que atinge a via ótica, predominantemente o quiasma (76%) e o NO (24%). Atinge crianças na 1ª década de vida, está muitas vezes associado a neurofibromatose e nestes casos tende a ser bilateral. Provoca baixa da acuidade visual lenta e progressiva e quando envolve o NO manifesta-se por proptose axial indolor e edema do DO, com evolução para atrofia ótica.

O meningioma do NO é um tumor derivado da aracnoideia, ocorre em adultos entre os 30-50 anos e pode estar também associado a neurofibromatose. Provoca baixa da acuidade visual lenta e progressiva, proptose axial indolor, edema e/ou atrofia do DO. Em 30% dos caso pode observar-se a presença de *shunts* optociliares a nível do DO.

- Na ecografia surgem como tumores sólidos, redondos, bem delimitados anteriormente, de baixa refletividade e estrutura interna homogénea.
- Os limites posteriores s\(\tilde{a}\) o dif\((\tilde{c}\) is de definir pois envolvem frequentemente todo o NO, pelo que devem ser estudados com RMN.
- Induzem alteração da morfologia e aumento da espessura do NO com edema e podem apresentar calcificações no seu interior (meningioma) (fig 90).

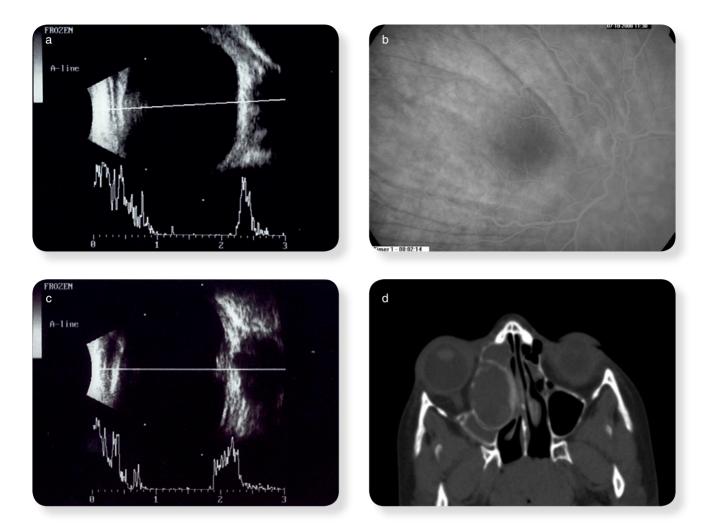
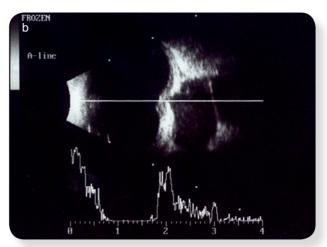
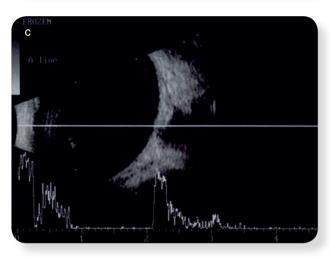
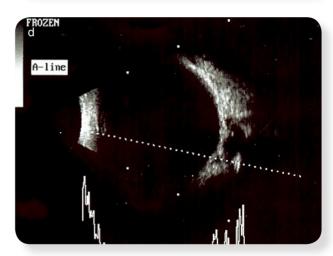
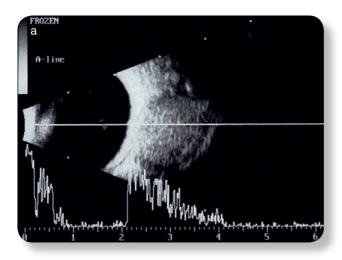
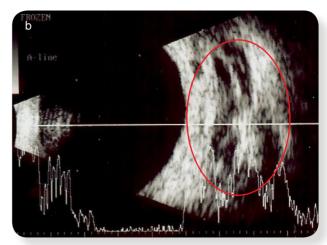




Fig 89 – Tumores orbitários: a) aplanamento do polo posterior; b) pregas da coroideia; c) espessamento do NO e edema do DO; d) lesão com origem nos seios etmoidoesfenoidais e invasão da órbita;




Fig 90 - Tumores neurogénicos: a) e b) glioma do NO; c) e d) meningioma do NO


10.1.2. TUMORES VASCULARES

O hemangioma capilar é um hamartoma congénito de crescimento rápido, manifesta-se até aos 6 meses de idade e involui lentamente em anos. De localização superficial na pele ou profunda na órbita, (quadrante nasal superior), apresenta-se na ecografia como uma lesão difusa mal definida, de refletividade alta e estrutura interna heterogéna.

O hemangioma cavernoso é um hamartoma congénito de evolução muito lenta pelo que se torna sintomático apenas na idade adulta. É um tumor quístico, intracónico, redondo, bem delimitado anterior e posteriormente, de média refletividade e estrutura interna homogénea, com atenuação posterior (fig 91). Não está aderente ao NO ou MOM, mas devido ao seu volume condiciona o desvio dessas estruturas.

O linfangioma é um tumor vascular benigno, que envolve difusamente a órbita posterior, mas apresenta geralmente ramificações "fingerlike" que se estendem até à órbita anterior. Em modo A+B e recorrendo a incidências transversais, surgem como lesões quísticas, bem delimitadas, hiporrefletivas, que contrastam com a gordura orbitária hiperrefletiva (fig 91 b).

■ Fig 91 – Tumores vasculares: a) hemangioma cavernoso intracónico; b) linfangioma (extensões "fingerlike" em incidência transversal)

10.1.3. TUMORES LINFOPROLIFERATIVOS

Incluem-se neste grupo o pseudotumor da órbita, as alterações granulomatosas (granulomatose de Wegener, sarcoidose), a hiperplasia linfoide e os linfomas.

O **pseudotumor** é uma inflamação não granulomatosa aguda ou crónica, unilateral, sem manifestações sistémicas e que ocorre na órbita anterior envolvendo difusamente a gordura orbitária, ou atingindo especificamente algumas estruturas, em especial a glândula lacrimal, MOM e esclerótica posterior. Acompanha-se quase sempre de outros sintomas e sinais inflamatórios – dor, edema palpebral, esclerite e miosite com limitação da motilidade ocular e diplopia.

O linfoma da órbita, tende a ser bilateral, de início insidioso com predominância no grupo etário dos 50-70 anos. Corresponde a 5-10% de todas as lesões sólidas orbitárias, sendo mais comum a forma não-Hodgkin. Localiza-se frequentemente na órbita superior, mas pode envolver a coroideia e a conjuntiva (fig 92 a-b). Manifesta-se por proptose excêntrica indolor, edema palpebral e massa palpável na órbita anterior e/ou glândula lacrimal. De crescimento difuso, molda-se ao globo ocular, nervo ótico, músculos oculomotores e paredes orbitárias. (fig 92 c-d)

Estas lesões têm características ecográficas

semelhantes – massa inflamatória focal ou multifocal, de localização variável, com limites anteriores bem definidos. Demonstram baixa/média refletividade e estrutura interna homogénea, que se torna mais heterogénea na presença de septos intralesionais (fig 92 e-f).

Fig 92 – Lesões linfoproliferativas: a) e b) linfoma orbitário com invasão da conjuntiva ("salmonpatche") e glândula lacrimal; c) e d) linfoma orbitário e glândula lacrimal; e) e f) pseudotumor associado a miosite

10.1.4. TUMORES DA GLÂNDULA LACRIMAL

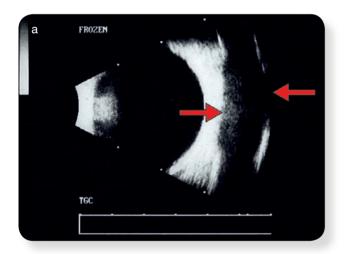
O adenoma pleomórfico (benigno) e o adenocarcinoma (maligno) são tumores epiteliais da glândula lacrimal (GL) que envolvem frequentemente o lobo orbitário da glândula e estendemse posteriormente. Localizam-se no quadrante temporal superior, provocam proptose excêntrica, identação do globo ocular, pregas da coroideia e remodelação ou erosão óssea.

O adenoma pleomórfico é o tumor benigno mais frequente, predomina no sexo masculino e tem crescimento lento. Raramente atinge o lobo palpebral e apresentase como uma lesão redonda ou oval, bem delimitada, com refletividade interna média

- e estrutura interna homogénea (fig 93). O diagnóstico diferencial deve ser feito com o quisto dermóide, o linfoma e o adenocarcinoma circunscrito (forma rara).
- O adenocarcinoma é um tumor maligno infiltrativo de crescimento rápido, atinge o lobo palpebral e orbitário e causa destruição óssea. Os limites são mal definidos (exceto no adenocarcinoma circunscrito), a refletividade é também média/alta mas a estrutura interna é geralmente irregular devido ao seu carácter difuso e invasivo. Zonas hiporrefletivas no seu interior correspondem a cavidades quísticas intratumorais e zonas hiperrefletivas a septos e/ou calcificações.



Fig 93 – Adenoma da glândula lacrimal: a) proptose excêntrica OD; b) ecografia do lobo orbitário da GL; c) peça operatória


10.1.5. LESÕES ESTRUTURAIS

O mucocelo é uma lesão quística preenchida por muco, de crescimento lento, com origem nos seios perinasais e que, ao provocar erosão óssea invade a órbita, mais frequentemente a nível da parede interna ou do teto. Condiciona compressão do globo ocular e proptose excêntrica com dor e diplopia e localiza-se geralmente no quadrante supero-nasal. Ocorre em adultos, mas crianças com fibrose quística são suscetíveis a este tipo de lesão.

 No exame ecográfico apresenta refletividade interna baixa, limites bem definidos anteriormente e defeito ósseo adjacente, ocupado pelo mucocelo (setas) (fig 94).

O **quisto dermóide** é um coristoma preenchido por material queratinizado, de localização superior e superficial na órbita anterior ou mais profundamente na órbita posterior.

 Ecograficamente surge como uma lesão redonda quística, de limites bem definidos, de refletividade média/alta (dependente do conteúdo) e estrutura interna irregular (fig 95).

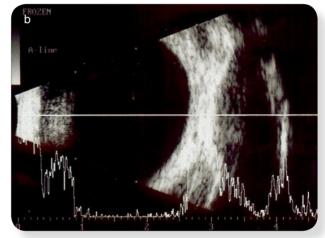
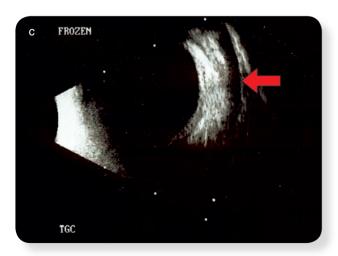


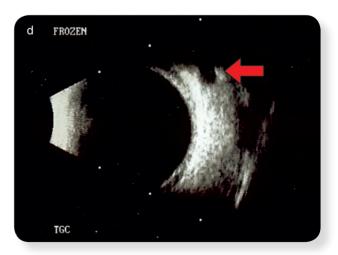
Fig 94 – Mucocelos da órbita.

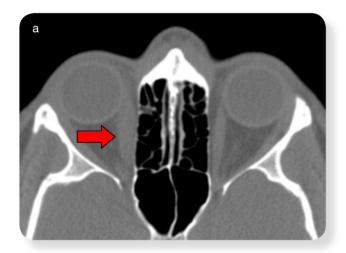
Fig 95 – Quisto dermóide: a) sonda sobre a lesão; b) sonda transocular dirigida para a lesão e órbita superior

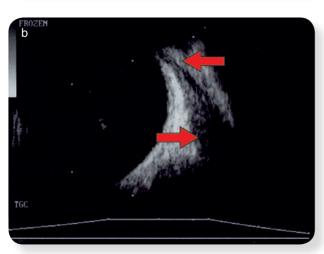

10.1.6. MALFORMAÇÕES VASCULARES

A fistula carótido-cavernosa corresponde a uma comunicação anormal entre a carótida interna e o seio cavernoso. As causas mais frequentes nas fístulas diretas de alto débito são o traumatismo craneano e a rotura espontânea de um aneurisma carotídeo intracavernoso. Nas fístulas indiretas de baixo débito, a porção intracavernosa da carótida interna permanece intacta e o sangue arterial flui através dos ramos meníngeos das carótidas interna e externa indiretamente para o seio cavernoso. Provocam congestão e estase venosa a nível da órbita com aumento da pressão venosa episcleral e ingurgitamento dos vasos conjuntivais, episclerais e da veia oftálmica superior (fig 96 a-b).

 As alterações ecográficas são variáveis dependendo do tipo de fístula (alto ou baixo débito) - dilatação da veia oftálmica superior que se torna visível, espessamento dos MOM e edema do DO (fig 96)




Fig 96 – Fístula carótido-cavernosa: a) ingurgitamentos dos vasos conjuntivais e episclerais; b) ingurgitamento da veia oftálmica superior (seta); c) e d) dilatação da veia oftálmica superior (setas)


10.2. MÚSCULOS OCULOMOTORES

A patologia inflamatória da órbita como a **oftal-mopatia tiroideia** (OT) e a **miosite** associada ao **pseudotumor da órbita** (PO) cursam com aumento da espessura dos MOM uni ou bilateralmente e envolvendo apenas um ou vários músculos simultaneamente.

A ecografia permite identificar essas alterações assim como outras que frequentemente estão associadas nomeadamente a esclerite posterior e o edema da papila.

 Na miosite a inflamação envolve geralmente corpo e tendão musculares e provoca proptose com dor intensa e limitação da motilidade ocular. O estudo ecográfico põe em evidência o envolvimento do tendão e espessamento muscular com refletividade interna baixa (fig 97) e constitui um ótimo meio de controlar a resposta ao tratamento (fig 98).

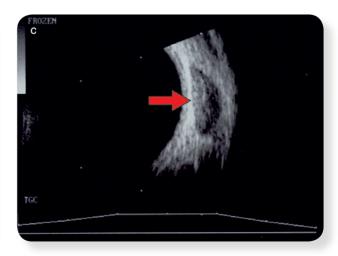
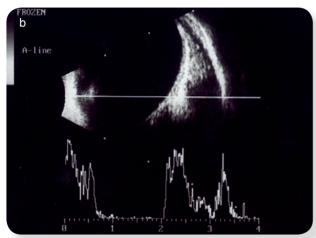
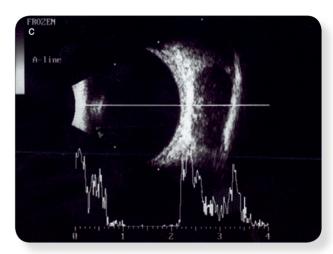
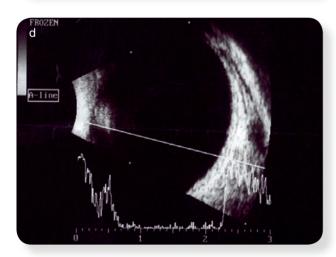





Fig 97 - Miosite do M.R.Interno - espessamento do tendão e corpo muscular: a) TAC das órbitas; b) incidência longitudinal; c) incidência transversal

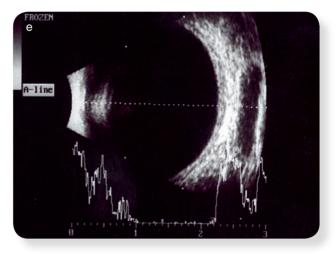
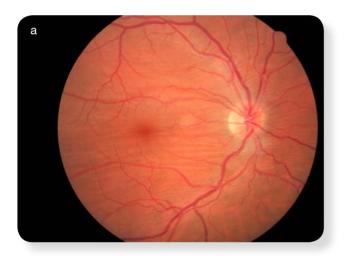



Fig 98 - Miosite do M.R.Externo: a) b) c) antes do tratamento com evidente espessamento macular (setas); d) e e) exame de controlo após tratamento com corticoesteroides.

 Na oftalmopatia/orbitopatia tiroideia a apresentação clínica com exoftalmia, a que se podem associar pregas da coroideia (fig 101 a), edema do DO e hipertensão ocular resulta do aumento do volume da gordura orbitária e dos MOM devido a infiltração por células inflamatórias. O músculo mais frequentemente envolvido é o reto inferior, seguido de reto interno, reto superior e reto externo.

No entanto, no exame ecográfico é mais fácil de identificar a alteração dos retos horizontais cujo corpo muscular se apresenta com espessura aumentada mas, sem envolvimento do tendão de inserção na esclerótica. A refletividade interna é média/alta e a estrutura interna é heterogénea (fig 99 b).

Se o envolvimento ocorrer posteriormente a nível do ápex da órbita, a ecografia é normal e só a TAC ou RMN poderão pôr em evidência essas alterações, cuja consequência mais grave é a neuropatia ótica compressiva (fig 99 c).

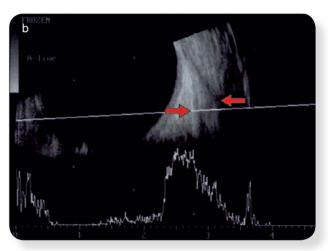
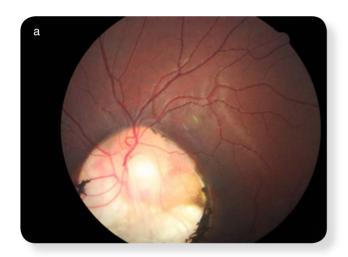
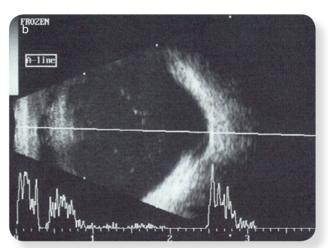


Fig 99 – Oftalmopatia tiroideia: a) pregas da coroideia; b) espessamento muscular com tendão normal; c) espessamento muscular a nível do ápex da órbita.


10.3. NERVO ÓTICO


10.3.1. ALTERAÇÕES DA MORFOLOGIA DO NERVO ÓTICO

COLOBOMA DO NERVO ÓTICO

O coloboma do NO corresponde a uma anomalia do encerramento da fissura embrionária. Apresenta-se como uma escavação bem delimitada localizada ao DO e que pode envolver a retina e coroideia adjacentes, assim como estender-se ao segmento anterior.

 Em modo B surge como um defeito ou escavação na normal curvatura da parede ocular/ NO, com profundidade e dimensões variáveis (fig 100).

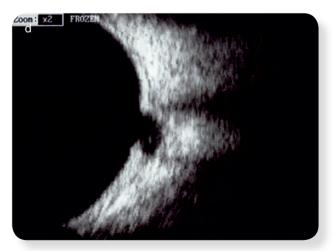
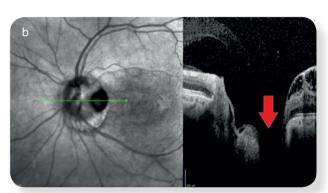
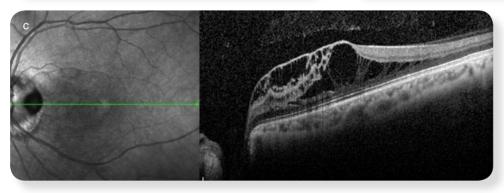
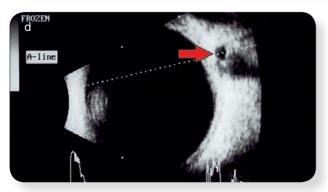


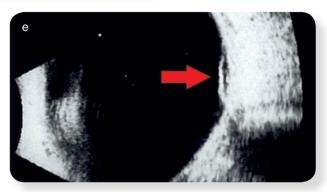
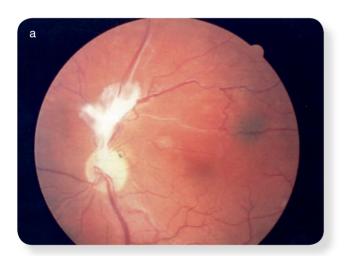
Fig 100 – Colobomas: a) e b) coloboma do DO e retina/coroideia; c) e d) morning glory sindrome

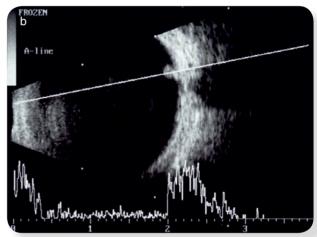

OPTIC PIT


O optic pit ou fosseta papilar corresponde a um defeito congénito do disco ótico, de profundidade variável e unilateral. De coloração cinzenta, amarelada ou negra localiza-se mais frequentemente no lado temporal (fig 101 a). Na ausência de complicações não afeta a visão, sendo a maioria das vezes detetado apenas em exame de rotina.


O OCT é o exame de eleição para identificar a fosseta, assim como alterações maculares associadas, nomeadamente o descolamento seroso (fig 101 b-c).

 Na ecografia, dependendo da incidência, a fosseta surge como uma escavação ou um espaço quístico, redondo, na espessura do NO. Quando associado a descolamento seroso da neurorretina é evidente o espessamento da área macular ou mesmo uma pequena bolha de descolamento, adjacente ao DO (fig 101d-e).

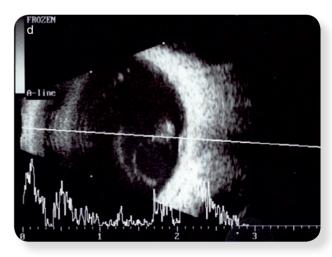



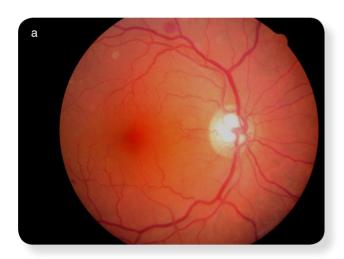

Fig 101 – Optic pit (fosseta papilar): a) e b) fosseta temporal; c) OCT com fosseta e descolamento seroso da mácula; d) fosseta; e) descolamento seroso

FIBRAS DE MIELINA

A existência de **fibras de mielina** no DO ocorre em cerca de 1% dos olhos. Mais ou menos densas, dispõem-se segundo o trajeto das fibras axonais.

Na ecografia pode observar-se a presença de membranas de refletividade variável aderentes ao DO e que se prolongam para a cavidade vítrea (fig 102). No entanto, não apresentam características específicas que permitam fazer o diagnóstico diferencial com outras membranas aderentes ao DO.




Fig 102 – Fibras de mielina no DO

ESCAVAÇÃO DO DISCO ÓTICO

A escavação do DO glaucomatosa só é identificável em ecografia quando atinge grandes proporções e usando preferencialmente uma sonda de maior resolução (20 MHz).

 Observa-se então uma identação a nível do segmento intra-escleral do NO e que tem continuidade com a hiporreflectividade própria do segmento intraorbitário (fig 103).

A **pseudo-escavação do DO** está associada e grande espessamento difuso da retina e coroideia peripapilar, o que condiciona uma aparente depressão sobreposta à papila (fig 104).

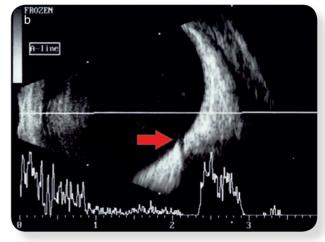
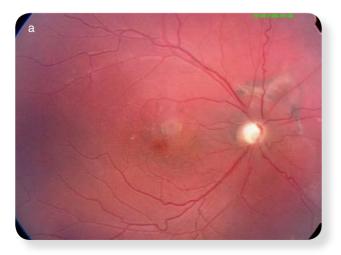



Fig 103 – Escavação glaucomatosa do DO

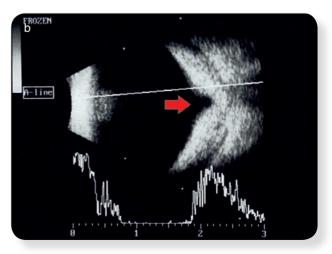


Fig 104 – Pseudoescavação do DO associada a espessamento difuso da coroideia (S. Sturge Weber)

10.3.2. EDEMA DO DISCO ÓTICO

O edema do disco ótico (EDO) surge associado a numerosas doenças que envolvem uni ou bilateralmente o NO e/ou a órbita. O exame clínico só por si não permite diagnosticar a causa, pelo que os exames de imagem são mais uma vez fundamentais. A ecografia complementa a TAC ou RMN mas, em algumas situações pode ser considerada um exame de primeira linha e assim evitar a realização de outros exames mais invasivos e dispendiosos. É o caso do pseudopapiledema por drusen do nervo ótico.

DRUSEN DO NERVO ÓTICO

O drusen do nervo ótico (fig 105 a-b) afeta cerca de 2-5% da população, é mais frequente na raça caucasiana, ocorre em qualquer sexo e idade e é geralmente bilateral. Habitualmente não causa sintomas, mas pode aumentar de tamanho e provocar alteração do campo visual e diminuição progressiva da acuidade visual. As principais complicações são a oclusão venosa retiniana e a neuropatia ótica isquémica.

O diagnóstico é clínico e imagiológico por ecografia, cuja imagem típica quase sempre exclui a necessidade de realizar outros exames, sobretudo na ausência de sintomas e sinais clínicos associados a hipertensão intracraneana.

Nas formas não complicadas não é necessário tratamento e o seguimento deve ser realizado periodicamente com avaliação da acuidade visual e se necessário, campimetria e OCT para estudo da espessura da camada de fibras nervosas.

 A ecografia identifica uma formação nodular, hiperreflectiva, de localização mais ou menos superficial na papila e que devido à sua constituição em cálcio, mantém ecogenicidade alta mesmo quando diminuimos o ganho (fig 105 c-d).

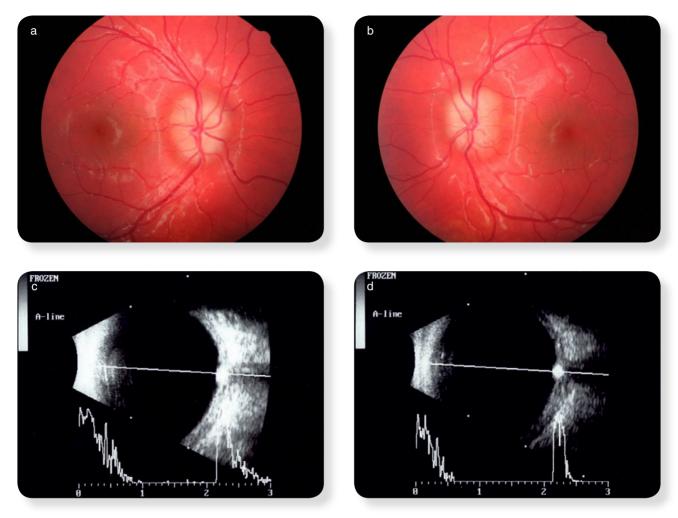
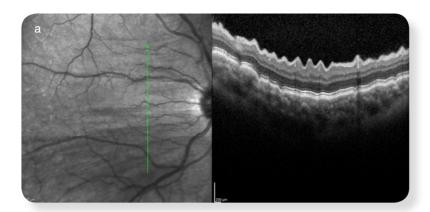


Fig 105 – Drusen do DO bilateral: a) e b) retinografia; c) eco axial com ganho aumentado; d) eco axial com ganho diminuído

HIPOTONIA


A **hipotonia**, geralmente associada a traumatismo ou procedimentos cirúrgicos, acompanha-se de edema da papila e também de pregas da coroideia, cuja imagem de OCT é muito típica.

 Pregueamento da neurorretina e também do complexo epitélio pigmentado/Bruch/coriocapilar, em comparação com a membrana epirretiniana macular cujo pregueamento atinge apenas as camadas internas da neurorretina (fig 106).

O diagnóstico é quase sempre clínico mas, a ecografia é importante para:

 Medir o comprimento axial, excluir a presença de esclerite posterior, descolamento da coroideia e/ou retina, assim como monitorizar a evolução para eventual *phthisis bulbi*.

 A parede ocular apresenta-se espessada e o DO procidente na cavidade vítrea, mas sem sinais de edema a nível das bainhas (fig 107).

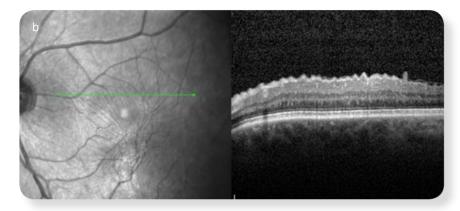


Fig 106 – Imagem de OCT: a) pregas da coroideia; b) membrana epirretiniana macular

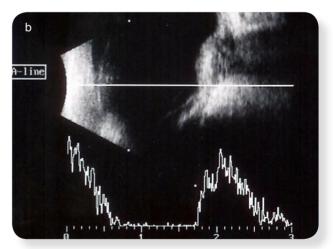
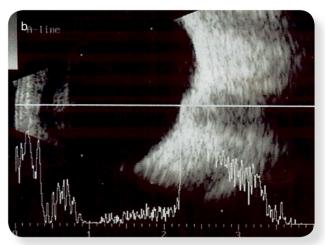
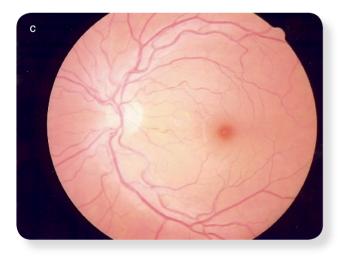
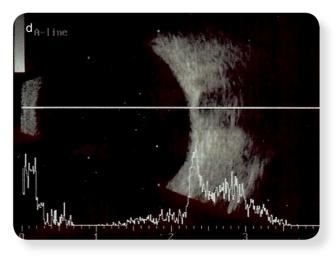


Fig 107 – Hipotonia: a) e b) edema da papila com diminuição do comprimento axial e procidência do DO.

NEVRITE ÓTICA


A **nevrite ótica/papilite**, independentemente da causa (vascular, inflamatória, infecciosa, infiltrativa) provoca edema do parênquima do NO associado muitas vezes a sinais de esclerite posterior e retinite com edema da mácula.


- Na ecografia observa-se procidência do DO e espessamento do NO com aumento da sua refletividade (fig 108).
- O diagnóstico diferencial deve ser feito com tumores primários ou secundários do NO, daí a necessidade de realizar outros exames imagiológicos, nomeadamente a RMN, essencial também para o diagnóstico de doença desmielinizante.


PAPILEDEMA

No **papiledema**, quase sempre sinal de hipertensão intracraneana (HIC), verifica-se um aumento da espessura do NO, com duplo contorno (reforço do sinal por presença de fluido nas bainhas) e que em corte transversal apresenta o sinal do "donuts"- crescente hiporreflectivo posterior (fig 109 a-b).

■ Fig 108 – Papilite do OD por neurossifilis: a) e b) espessamento com aumento da refletividade do NO e procidência do DO; c) e d) olho contralateral sem alterações

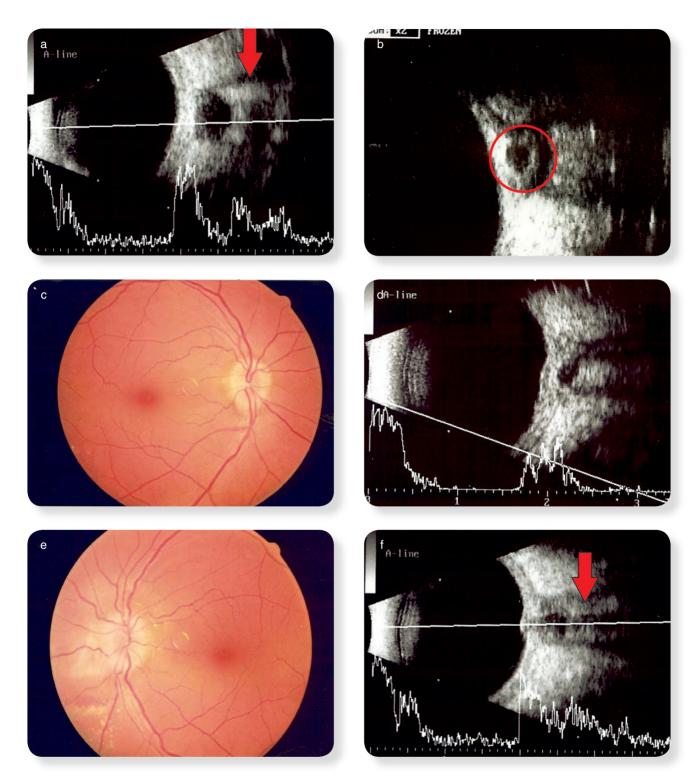


Fig 109 - Papiledema: a) e b) duplo contorno, sinal do "donuts"; c) a f) papiledema por HIC, espessamento e procidência do NO, sinal do "donuts" e duplo contorno (setas)

Com o teste dos 30° é possível diferenciar entre fluido nas bainhas do NO ou lesão ocupando espaço. Em primeiro tempo, com a sonda colocada no lado temporal dirigida para o polo posterior e o doente a olhar em posição primária, avalia-se a espessura do NO. Em segundo tempo, com a sonda na mesma posição e o doente a olhar na sua direcção, avalia-se novamente a espessura do NO. Só no primeiro caso (edema) se verifica a diminuição da sua espessura quando o doente desvia o olhar, pois o fluido distribui-se ao longo do NO que se encontra estirado devido à rotação do globo ocular.

O diagnóstico de **hipertensão intracraneana idiopática (pseudotumor cerebri)** é um diagnóstico de exclusão:

- Os exames de neuroimagem são negativos.
- O exame citoquímico do líquido cefalorraquidiano é normal.
- A pressão de saída na punção lombar é muito elevada (superior a 25 cm/H2O).

Na fundoscopia e na ecografia observa-se também papiledema grave com as caraterísticas anteriormente descritas, mas exames seriados comprovam a melhoria do quadro clínico com o tratamento médico (fig 110).

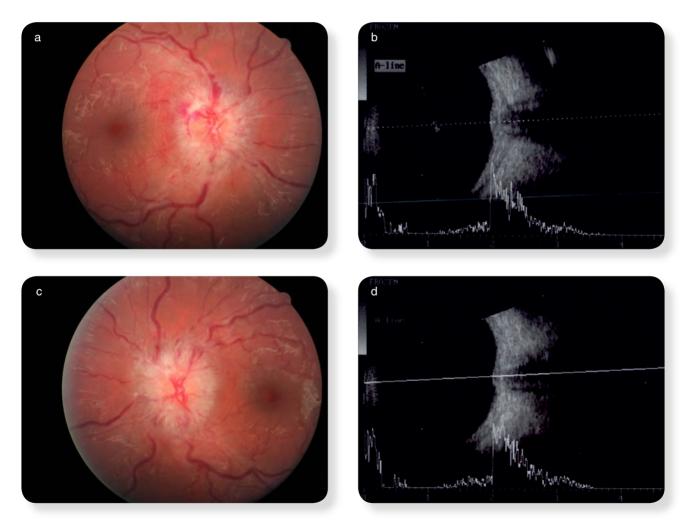


Fig 110 - Pseudopapiledema por hipertensão intracraneana idiopática

10.4. LIMITES DA ECOGRAFIA

Ecografia normal não é sinónimo de globo ocular e órbita normais.

Como todos os exames auxiliares de diagnóstico, o exame ecográfico do globo ocular e órbita apresenta indicações, e limitações próprias.

Sendo um exame **estrutural**, não identifica alterações vasculares, que devem ser estudadas por angiografia e não avalia a microestrutura da mácula que deve ser estudada por OCT (alta resolução).

Também a patologia da órbita, em especial da órbita posterior, assim como dos seios perinasais, deve ser estudada por TAC ou RM, uma vez que a frequência mais elevada das sondas oftálmicas (10 e 20 MHz) limitam a capacidade de penetração do ultrassom.

No entanto, conforme ilustrado nos capítulos anteriores, e repetindo as palavras iniciais do Professor Manuel Monteiro-Grillo, "o estudo ultrassónico do aparelho visual é um método complementar que continua a ter uma enorme importância na prática clínica oftalmológica" e, cuja técnica deverá fazer parte da aprendizagem de todos aqueles que se iniciam na oftalmologia.

Atlas de Ecografia Oftálmica Vol I - Ecografia do Segmento Posterior

BIBLIOGRAFIA

Bibliografia:

- Byrne SF, green RL. Ultrasound of the eye and orbit, second ed, Mosb; 2002
- Dibernardi C, Schachat A, Fekrat S, Ophthalmic ultrasound a diagnostic atlas, 2ªed., Thieme; 1998
- Coleman DJ, Lizzi SL, Jack RL. Ultrasonography of the eye and orbit, second ed., Lippincott; 2006
- Cejas C, Benavides. Ecografia e dopller ocular e orbitario, 1ª ed., Ediciones journal; 2004
- Shields JA, Shields C. Intraocular tumors, second ed., Lippincott; 2008
- Dutton JJ, Byrne SF, Proia AD. Diagnostic atlas of orbital disease, W.B. Saunders Company; 2000
- Baum G, Greenwood I. Ultrasonography

 an aid in orbital tumor diagnosis. Arch ophthalmol 1960; 64:180-194
- Coleman DJ. Reliability of ocular and orbital diagnosis with B-scan ultrasound. I. Ocular diagnosis. Am J Ophhtalmol 1972; 73:501-516
- Coleman DJ. Reliability of ocular and orbital diagnosis with B-scan ultrasound. II. Orbital diagnosis. Am J Ophthalmol 1972; 74:704-718
- Coleman DJ, Jack RL, Franzen LA. Ultrasonography in ocular trauma. Am J Ophthalmol 1973; 75: 279-288
- Coleman DJ, Franzen LA. Vitreous surgery: preoperative evaluation and prognostic value of ultrasonic display of vitreous hemorrhage. Arch Ophthalmol 1974; 92:375-381.
- Baum G. Problems in ultrasonographic diagnosis of retinal disease. Am J Ophthalmol 1971; 71:723-739.

- Baum G. Ultrasonographic characteristics of malignant melanoma. Arc Ophthalmol 1967; 78: 12-15.
- Coleman DJ, Abramson DH, Jack RL, et al. Ultrasonic diagnosis of tumors of the choroid. Arch Ophthalmol 1974; 91: 344-354.
- Shields JA, Shields CL, De Potter P, et al. Diagnosis and treatment of uveal melanoma. Sem oncology 1996; 23:763-767.
- Shields J, Augsburger J, Brown G, Stephens R. The diferential diagnosis of posterior uveal melanoma. Ophthalmol 1980; 87: 518-522.
- Sobottka B, Schlote T, Krumpasky HG, Kreissig I. Choroidal metasteses and choroidal melanomas: comparison of ultrasonographic findings. Br J Ophthalmol 1998; 82 (2): 150-161.

